

19ª edición

POSTCROI

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

Vacunas

Beatriz Mothe Pujadas, MD, PhD

Servei Malalties Infeccioses
Institut Recerca sida IrsiCaixa
HUGTIP, Badalona
@BeaMothe

General

Sunday February 13th
Opening Session

3 – Vaccine Strategies for HIV-1 & COVID-19

Dan H. Barouch

Wednesday February 16th Plenary Session 3

117 – Past & Future of HIV Vaccines *Mark Feinberg*

Preventive:

Active Immunization

Wednesday February 16th
Oral Abstract Session 10

121 Phase IIIb Efficacy trial of MOSAIC HIV-1 vaccine regimen in African women: IMBOKODO *Glenda E. Gray*

Passive Immunization

Thursday February 24th

Symposium 7

149 Lessons learned from the AMP: *Carolyn Williamson*

Tuesday February 15th

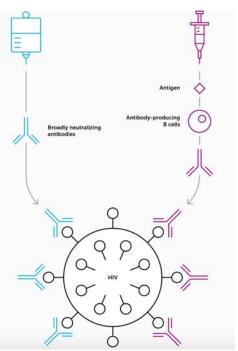
Oral Abstract Session 7

81 Phase I study of combinaton Ab *Magdalena E. Sobieszczyk*

Therapeutic:

Combinations

Tuesday February 15th **Oral Abstract Session 5**


63 Therapeutic efficacy of combined active and passive immunization in SHIV+ macaques *Victoria E. Walker-Sperling*

ANTIBODY-BASED PROTECTION

- Direct administration of bnAbs
- Able to neutralize most types of HIV
- Instant protection that lasts months
- Potential for self-administration

ACTIVE IMMUNIZATION

- · Traditional approach to eliciting immunity
- Stimulates the body to make antibodies and elicits other immune responses
- Often requires 2-3 immunizations to stimulate protective immunity
- · Can provide long-lasting protection

COV

COV vaccines

Monday February 14th
Oral Abstract Session -4

47 – Safety & Effectiveness of Ad26.CoV2.S in SA: Sisonke *Glenda E. Gray*

48 – COVID-19 Booster in IS *Jung Sun*

Breakthrough infections

Monday February 14th

Oral Abstract Session -4

49- Infectiousness of breakthrough infections after vaccination and natural infection (Qatar)

Laith Abu-Raddad

Wednesday February 16th

Interactive Session -8

Viral load kinetics in partially or fully vaccinated individuals infected with SARS-CoV-2

Annelies Wilder-Smith

Monday February 14th
Interactive Session 1

COVID-19 – John P. Moore HPV - Margaret A. Stanley Flu – Florian Krammer Herpes – Betsy Herold HIV-1 – Alexandra Trkola

Mandates / Hesitancy

Monday February 14th

Interactive Session 3

History - Ruth Macklin

Minorities - Matifadza H. Davis

CT design

Sunday February 13th

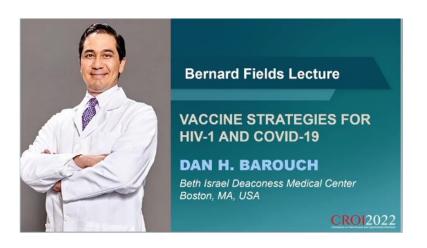
Workshop 4

Correlates - Peter Gilbert

Effectiveness - Sheena G. Sullivan

General

Sunday February 13th
Opening Session

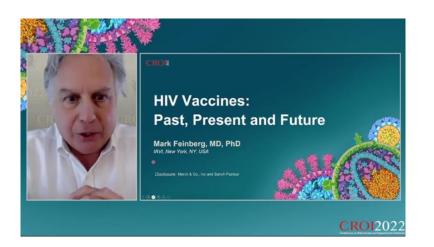

3 – Vaccine Strategies for HIV-1 & COVID-19

Dan H. Barouch

Wednesday February 16th **Plenary Session 3**

117 – Past & Future of HIV Vaccines

Mark Feinberg

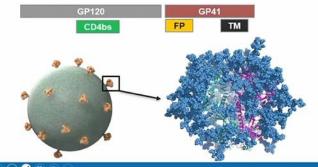

Two Contrasting Global Pandemics

<u>HIV-1</u>

- 40 Years
- Retrovirus
- Chronic persistent infection
- Immunodeficiency (AIDS)
- 79 million infections
- · 36 million deaths
- Enormous viral diversity
- · Env difficult to neutralize
- No vaccine available

SARS-CoV-2

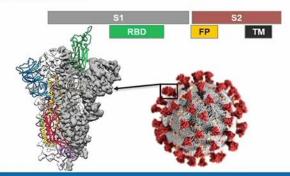
- · 2 Years
- Coronavirus
- Acute infection
- Respiratory illness (COVID-19)
- 408 million infections
- 5.8 million deaths
- Limited viral diversity
- Spike easy to neutralize
- Multiple vaccines available


SARS-CoV-2 and HIV: Similarities and differences

HIV-1

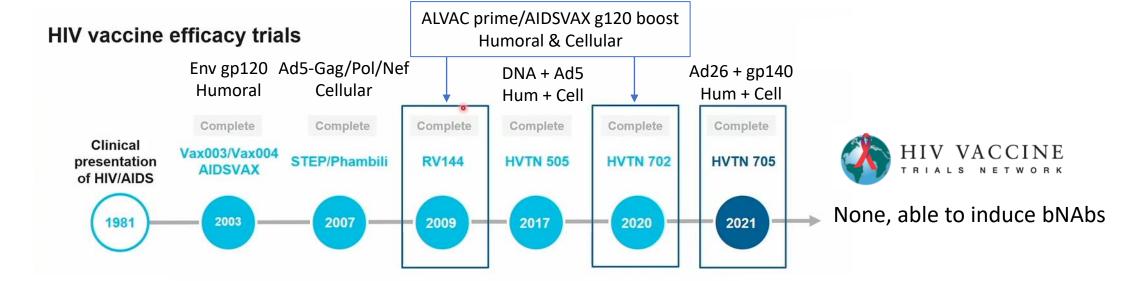
Target cell/disease = CD4+ T cells.....AIDS Host receptor = CD4 and CCR5 Entry = Env, 2 subunits (GP120 & GP41)

- → trimeric glycoprotein
- · Enormous diversity, persistent infection
- · High level glycosylation of Env
- · Neutralizing epitopes structurally shielded
- Neutralizing antibodies not readily elicited in natural infection, and to date, not by vaccination

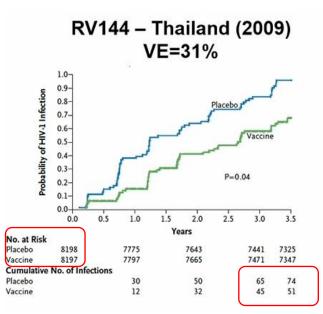


SARS-CoV-2

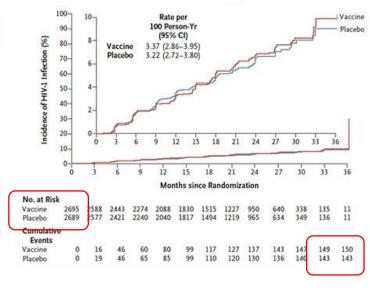
Target cell/disease = **Epithelial cells lungs....COVID-19**Host receptor = **ACE2**


Entry = Spike, 2 subunits (S1 & S2)

- → trimeric glycoprotein
- · More limited diversity, acute infection
- · More limited glycosylation of S
- · Neutralizing epitopes readily accessible to Abs
- Neutralizing antibodies readily elicited by infection and vaccination

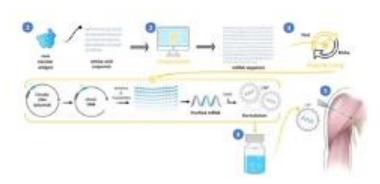

67

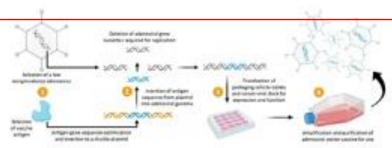
HVTN 702


RV144

Rerks-Ngarm, NEJM 2009

		134 1 1 1	1101111702	
		Complete	Complete	
	Viral Subtype	AE	С	
Viral	Viral Diversity	Relatively Homogenous	Highly diverse	
	HIV Risk/Incidence	0.28%	~4%	
Population	Host Genetics	Thai	African	
	Mucosal Inflammation	TBD	TBD	
	Adjuvant	Aluminum hydroxide	MF59	
	ALVAC Inserts	Subtype AE vCP1521	Subtype C vCP2438	
Vaccine	Protein Boost	otein Boost Bivalent AE/B (A244/MN)		
	Protein Dose	Higher (300 mg of each protein)	Lower (100 mg of each protein)	
	Dosing Schedule	M 0/1/3/6	M 0/1/3/6/12 (18)	


HVTN702 – South Africa (2020) VE=0%


Gray, NEJM 2021

Novel Vaccine Platforms: Gene-Based Vaccines

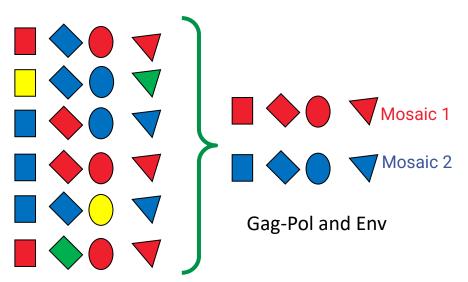
Nucleic Acid Vaccines (DNA, mRNA)

Viral Vector Vaccines (Adenovirus, Poxvirus)

Gebre et al. Cell 2021; 184:1589-1603

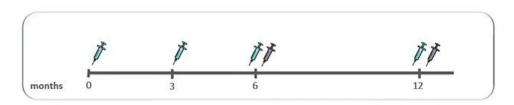
Ad26-vectored vaccines (JnJ):

Ad26-HIV


Ad26-ZIKV

Ad26-Ebola


Ad26-RSV


→ Ad26-COV

→ Two Complementary Phase 2b/3 Efficacy Studies

ІМВОКОДО

Phase: 2b

Enrollment: 2,637

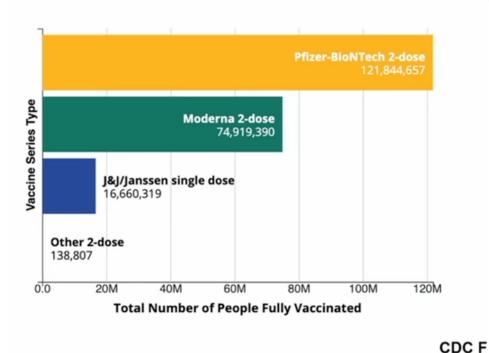
Participants: Young Women

(aged 18-35)

Location: 5 Southern African Countries

Timeline: Began Nov 2017, Vaccinations completed in

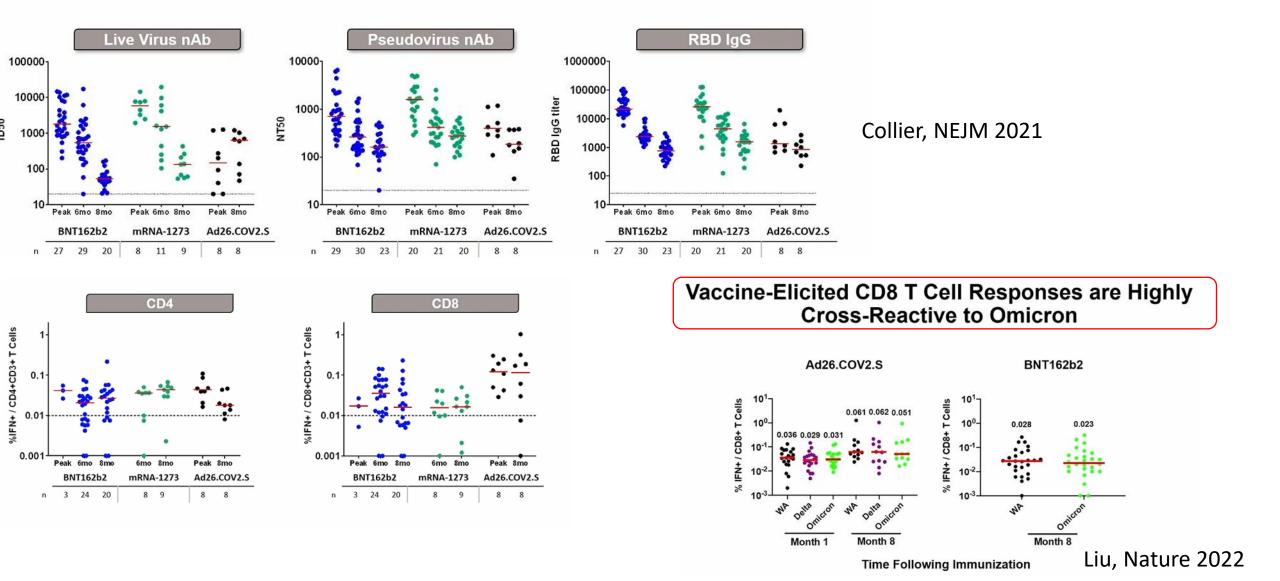
July 2020

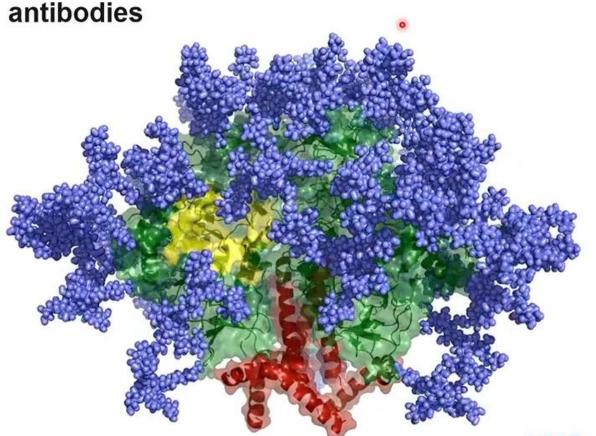

Delayed because of COVID-19 PrEP implementation

Fisher W, et al. Nat Med 2007 Barouch Nat Med 2010 Barouch, Cell 2013

<u>Differences:</u> HIV-1 clade, gender, route, protein boost

1 shot – ENSEMBLE (Shaddof, NEJm 2021) 72% VE, pre-Omicron 2 shots (wk 0,8) – ENSEMBLE 2 (Hardt, medRxiv 2022) 94% VE, pre-Omicron Implementation (SouthAfrica) – Sisonke (OA47)

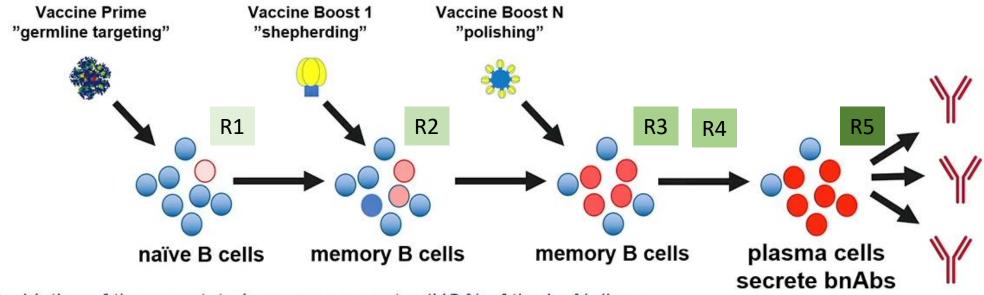

Fully Vaccinated Individuals in the US Limited Use of mRNA Vaccines in Africa


Ad26.COV2.S (JnJ)

1 shot — ENSEMBLE (Shaddof, NEJm 2021) 72% VE, pre-Omicron 2 shots (wk 0,8) — ENSEMBLE 2 (Hardt, medRxiv 2022) 94% VE, pre-Omicron Implementation (SouthAfrica) — Sisonke (OA47)

The HIV Env glycoprotein is a vexing immunologic target whose structure shields conserved protein epitopes and limits access of neutralizing

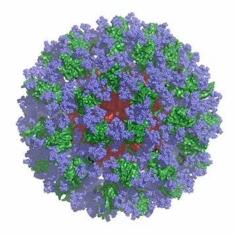
- HIV Env consists of ~50% glycans by mass, complicating Ab access to neutralization epitopes.
- HIV Env has 5 variable loops that can vary in length and glycosylation.
- In order to access recessed neutralization epitopes, long Ab heavy chain complementarity determining regions (HCDR3s) are often required, and these are present at low frequency in the human naïve B-cell repertoire and may also be subject to immune tolerance deletion.
- Most of the native glycoprotein is not highly immunogenic.


HIV Env trimers alone do not induce bnAbs; extensive Ab affinity maturation is required for neutralization

Strategy to induce bnAbs:

Germline targeting approach

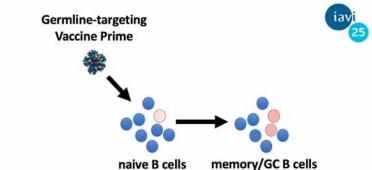
Germline targeting is an approach where the immune system is manipulated to elicit a very specific antibody response by finding the shortest pathway from germline to affinity mature antibodies with strategically designed priming and boosting immunogens.*



*Elucidation of the unmutated common ancestor (UCA) of the bnAb lineage is paired with definition of the optimal Env immunogen to trigger appropriate B cell precursor

Somatic hypermutation

IAVI G001 Phase I Trial: eOD-GT8 60mer/AS01_B



	Ci 4 i L	1 t - C		•	4
•	First-in-human	test of	germi	ine	tardetind
	I HOU III HOIHIGH	toot or	9011111		tal gothing

Self-assembling nanoparticle + strong adjuvant

Study Group	Study Group N eOD-GT8 60mer dose		Week 0	Week 8	
1 (low dose)	18	20 µg	eOD-GT8 60mer/ AS01 _B	eOD-GT8 60mer/ AS01 _B	
1 (low dose)	6		buffer	buffer	
2 (high doca)	18	100 µg	eOD-GT8 60mer/ AS01 _B	eOD-GT8 60mer/ AS01 _B	
2 (high dose)	6		buffer	buffer	
Total	48				

- First vaccination: Sept 2018; last vaccination March 2020
- Conducted at FHCRC (Seattle) and GWU (Washington, DC)
- Primary endpoint is safety
- Major immunological endpoint is to determine if the vaccine induces VRC01-class IgG+ B cells
- Critical readout by B-cell sorting/sequencing at VRC and FHCRC
 - first-in-human use of this assay as the bottom-line endpoint
 - credit to McDermott/Koup (VRC), Cohen/McElrath (FHCRC) and their teams

- eOD-GT8 60mer/AS01_B was safe and well tolerated
- Strong CD4bs responses

After 1-2 shots, **0.06-0.42%** of IgG memory B cells in PBMCs were CD4bs-specific

High positivity VRC01-class responses (VH1-2 + 5 amino acid LCDR3)

After 1-2 shots, 94-97% vaccinees produced VRC01-class responses

See upcoming session by **Bill Schief**: **February 24, 8:30AM – 10AM MT** *Jump-Started Immune Response: Now, how to teach breadth?*

High frequency VRC01-class responses

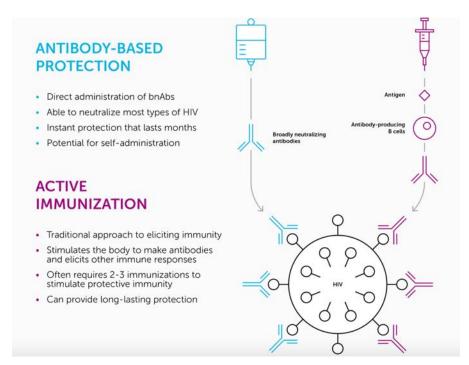
After 1-2 shots, 0.014-0.10% of IgG memory B cells in PBMCs were VRC01-class

Autologous boost increased mutation levels and affinities

Key support for sequential vaccination in humans

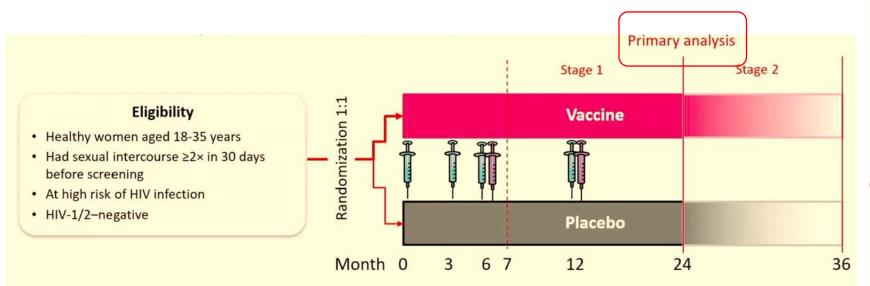
· Post-vaccination antibodies can be used to help select boost candidate

Fainharg - IAVI


Preventive:

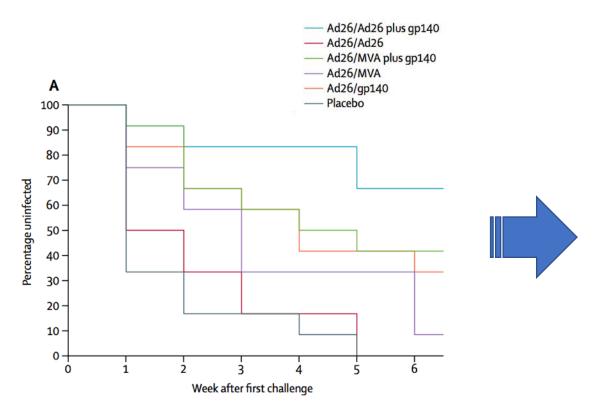
Active Immunization

Wednesday February 16th
Oral Abstract Session 10


121 Phase IIIb Efficacy trial of MOSAIC HIV-1 vaccine regimen in African women: IMBOKODO

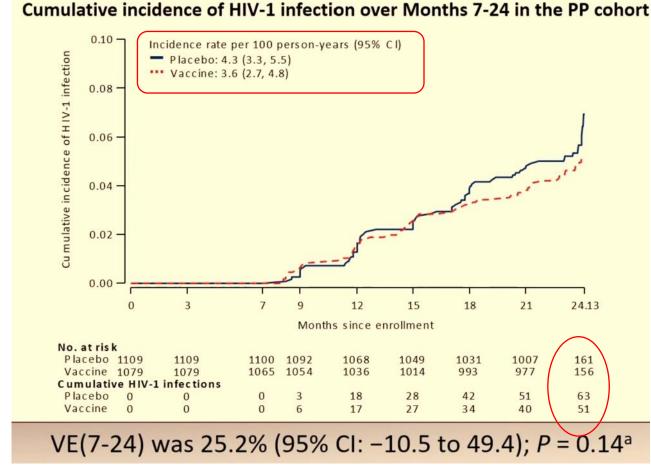
Glenda E. Gray

OA121 Phase IIIb Efficacy trial of MOSAIC HIV-1 vaccine regimen in African women: IMBOKODO Glenda Gray



HIV-1 vaccine composition Ad26.Mos4.HIV Ad26.Mos1.Gag-Pol Ad26.Mos2.Gag-Pol Ad26.Mos1.Env Ad26.Mos2S.Env Soluble gp140 + aluminum phosphate adjuvant Clade C gp140 (250 µg)

Sample size of 2600 had a 90% power to reject a null hypothesis of VE(7-24) ≤0% under an assumed VE(7-24) of 50%


Study would continue to Stage 2 if the lower bound of the 95% CI for VE(7-24) was >0%

NHP

Barouch, Lancet 2018

Human CT....

Subtype B, MSM, anal intercourse, protein boost gp140 Clade C + mosaic. Ongoing....

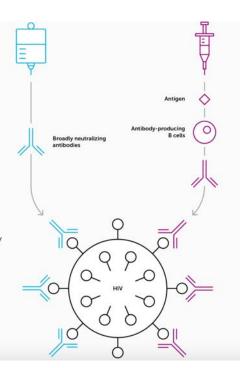
Preventive:

Passive Immunization

Thursday February 24th **Symposium 7**

149 Lessons learned from the AMP: *Carolyn Williamson*

Tuesday February 15th
Oral Abstract Session 7


81 Phase I study of combinaton Ab *Magdalena E. Sobieszczyk*

ANTIBODY-BASED PROTECTION

- Direct administration of bnAbs
- · Able to neutralize most types of HIV
- Instant protection that lasts months
- · Potential for self-administration

ACTIVE IMMUNIZATION

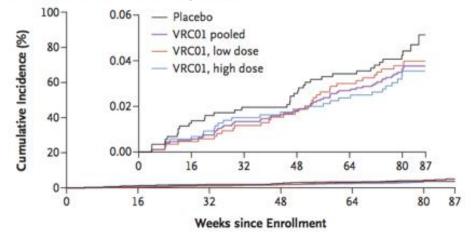
- Traditional approach to eliciting immunity
- Stimulates the body to make antibodies and elicits other immune responses
- Often requires 2-3 immunizations to stimulate protective immunity
- Can provide long-lasting protection

OA149 Lessons learned from the AMP (Antibody mediated protection)

Carolyn Williamson

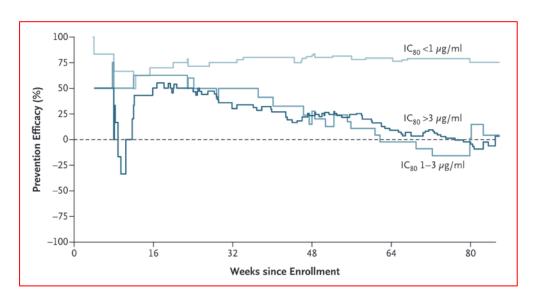
Proof of concept in Humans that bNAb can protect from HIV acquisition VRC01 (CD4 binding site)

10mg/kg and 30 mg/kg


Every 2 months (total 10 infusions)

High risk women (Africa)

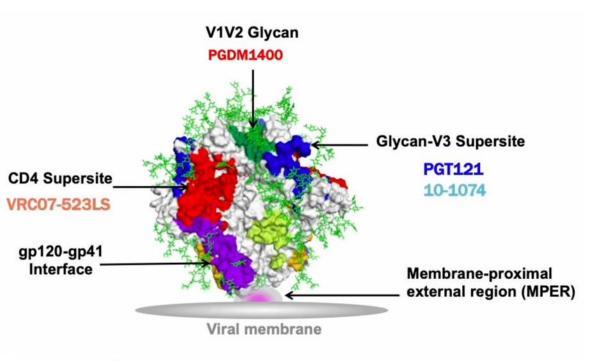
MSM and TGI (Americas)


Total 4.600

A Incidence of HIV-1 Infection in HVTN 704/HPTN 085

Corey, NEJM 2021

PE 75% (45-89) against MOST SENSITIVE viruses (<1ug/ml) after 2 doses


- → Need 2-3 different targets (combination of bNAbs)
- → Titer biomarker for prevention :

90% protection requires serum neutralization ID₈₀ titer of 200


Gilbert, submitted

OA81 Phase I study of combinaton anti-HIV neutralizing antibodies in HIV-negative adults

Magdalena E. Sobieszczyk

Study	/ arm	N	Dose	Month 0	Month 4
Treatment 1	T1	6	20+20 mg/kg	PGT121 VRC07-523LS	-
Treatment 2	T2	6	20+20 mg/kg	PGDM1400 VRC07-523LS	-
Treatment 3	T3	6	20+20 mg/kg	10-1074 VRC07-523LS	-
Treatment 4	T4 T4	9	20+20+20 mg/kg	PGDM1400 PGT121 VRC07-523LS	PGDM1400 PGT121 VRC07-523LS

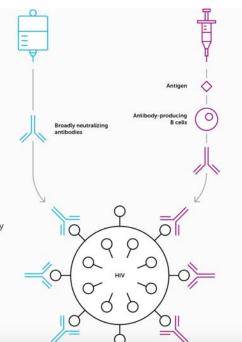
- PK patterns were consistent for each bnAb between the dual or triple combinations (and consistent with prior data)
- Neutralization function was maintained as predicted by PK data
- Complementary neutralization magnitude and breadth of infused bnAbs were maintained in this 'first in human' study

Therapeutic:

Combinations

Tuesday February 15th
Oral Abstract Session 5

63 Therapeutic efficacy of combined active and passive immunization in SHIV+ macaques

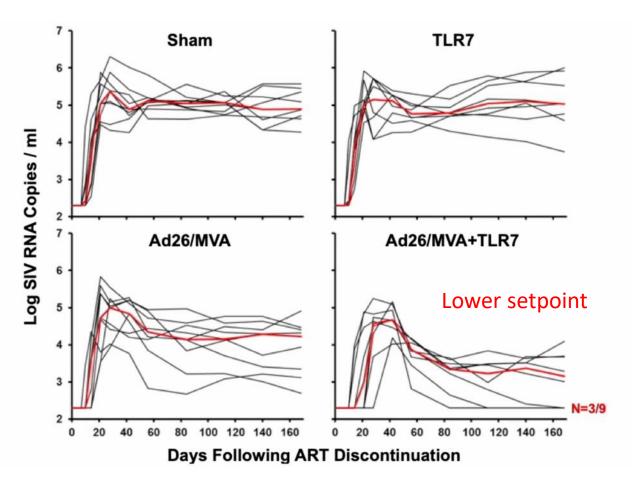

Victoria E. Walker-Sperling

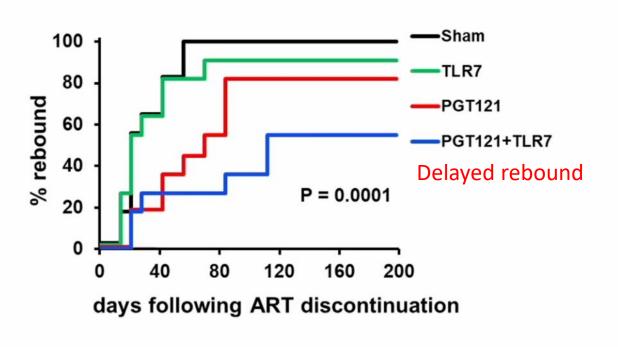
ANTIBODY-BASED PROTECTION

- · Direct administration of bnAbs
- Able to neutralize most types of HIV
- Instant protection that lasts months
- · Potential for self-administration

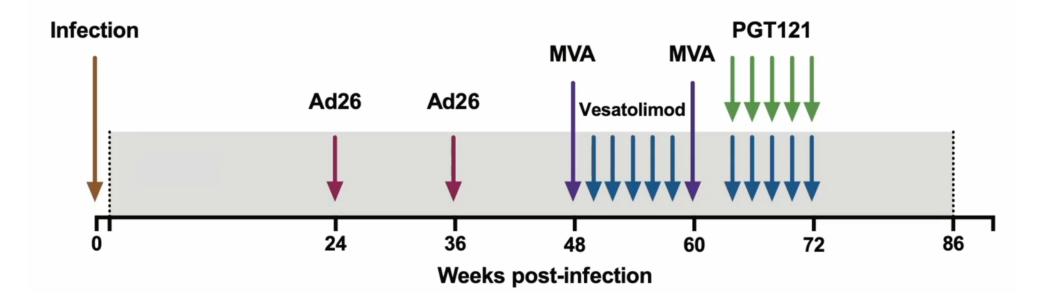
ACTIVE IMMUNIZATION

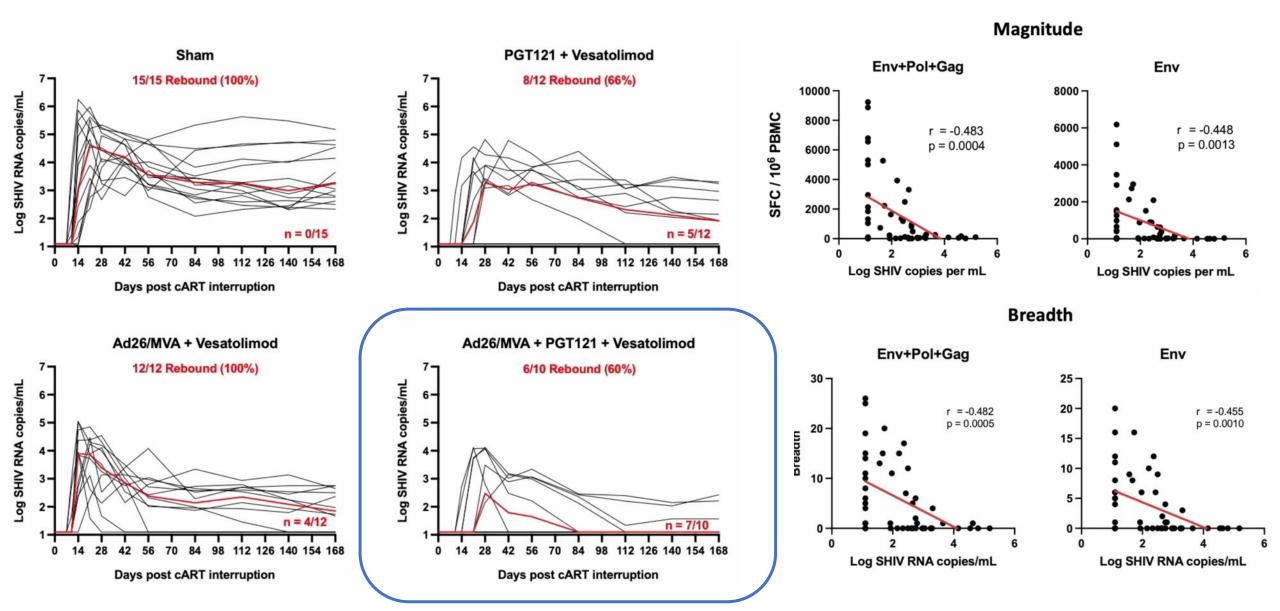
- Traditional approach to eliciting immunity
- Stimulates the body to make antibodies and elicits other immune responses
- Often requires 2-3 immunizations to stimulate protective immunity
- Can provide long-lasting protection




OA63 Therapeutic efficacy of combined active and passive immunization in SHIV+ macaques

Victoria E. Walker-Sperling


SHIV model of acute infection – ART started at day 9


- Ad26/MVA vaccine
- TRL7 agonist (Vesatolimod) latency reversing agent +/- immunemodulator
- PGT121 bNAb against glycan V3 supersite

- 51 Rhesus macaques infected intrarectally with SHIV-SF162P3 and treated from D9 onward with preformulated, daily ART (TDF, FTC, DTG).
 - Group 1: Ad26/MVA + PGT121 + Vesatolimod (N=12)
 - Group 2: Ad26/MVA + Vesatolimod (N=12)
 → Equivalent to AELIX003 CT w/HTI vaccines
 - Group 3: PGT121 + Vesatolimod (N=12)
 - Group 4: Sham (N=15)

Delayed Rebound, Lower setpoint, higher PTC

COV

COV vaccines

Monday February 14th
Oral Abstract Session -4

47 – Safety & Effectiveness of Ad26.CoV2.S in SA: Sisonke *Glenda E. Gray*

48 – COVID-19 Booster in IS *Jung Sun*

Breakthrough infections

Monday February 14th

Oral Abstract Session -4

49- Infectiousness of breakthrough infections after vaccination and natural infection (Qatar)

Laith Abu-Raddad

Wednesday February 16th

Interactive Session -8

Viral load kinetics in partially or fully vaccinated individuals infected with SARS-CoV-2

Annelies Wilder-Smith

Monday February 14th
Interactive Session 1

COVID-19 – John P. Moore HPV - Margaret A. Stanley Flu – Florian Krammer Herpes – Betsy Herold HIV-1 – Alexandra Trkola

Mandates / Hesitancy

Monday February 14th

Interactive Session 3

History - Ruth Macklin

Minorities - Matifadza H. Davis

CT design

Sunday February 13th

Workshop 4

Correlates - Peter Gilbert
Effectiveness - Sheena G. Sullivan

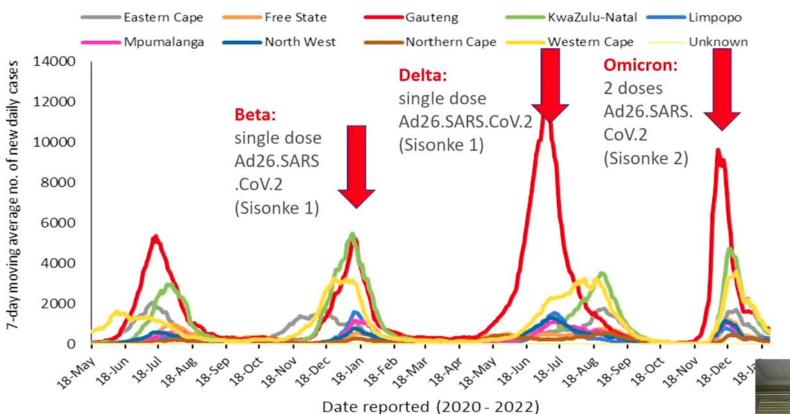
COV vaccines

Monday February 14th
Oral Abstract Session -4

47 – Safety & Effectiveness of Ad26.CoV2.S in SA: Sisonke *Glenda E. Gray*

48 – COVID-19 Booster in IS *Jung Sun*

OA47. Implementation Ad26.COV2.S (1 or 2 shots in health-care workers in SouthAfrica) – Sisonke Glenda Gray


EFFECTIVENESS vs EFFICACY (ENSEMBLE 1 & 2 Clinical Trials)

496,434 HCW

237,981HCW

Period of Analyses: Sisonke 1 & Sisonke 2

HTA: 74,381 (16%)

DM: 28,063 (6%)

VIH: 39,386 (8%)

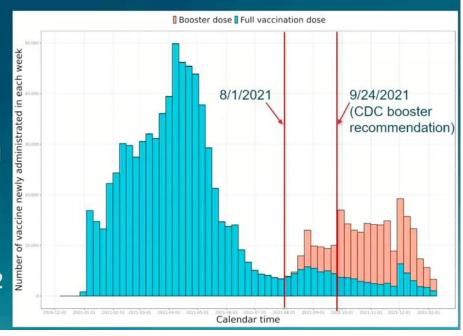
7-day moving average number of new cases by province and date of reporting, 18 May 2020 to date, S (source NICD)

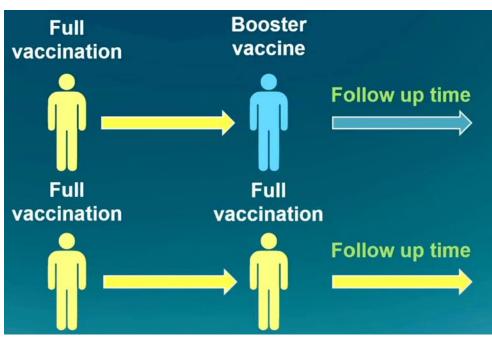
Safety:

TTS: 2 cases → Observed/Expected ratio (95% CI): 2.40 (0.29-8.66)

Guillaim Barré: 4 cases → O/E ratio: **5.09 (1.39 – 13.02)**

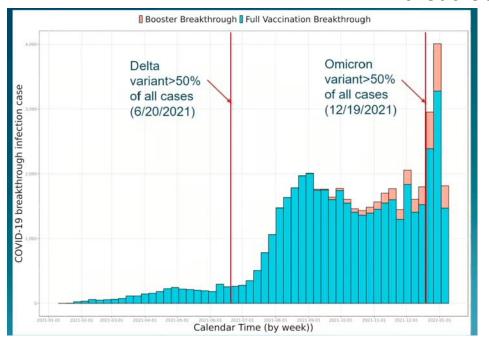
Effectiveness : Test Negative Case Control


Sub- population	Sub-cohort	Covid	-19 hospital admis	ssions	Covid -19 hospital admission requiring critical or intensive cave			Covid-19 related death			
		Vaccinated Unvaccinated Events/ Events/ P-Y P-Y	Unvaccinated /	VE	Vaccinated	Unvaccinated	VE	Vaccinated	Unvaccinated/	VE	
			(95% CI)	Events/ P-Y	Events/ P-Y	(95% CI) %	Events/ P-Y	Events/ (95	(95% CI) %		
One or more co-existing risk factors for severe Covid- 19	Scheme A	91/6 446	265/6 378	66 (57,73)	11/6 455	77/6 394	86 (76,94)	6/6 456	58/6 398	89 (78,98)	
	Scheme B	90/8 359	247/8 351	63 (54,72)	24/8 363	85/8 366	71 (57,83)	12/8 367	56/8 374	78 (60,89)	
	Scheme A	12/997	14/705	-	-	- \	-	-	- \	-	
HIV	Scheme B	18/3 802	66/3 731	73 (58,85)	4/3 802	19/3 736	79 (51,96)	5/3 803	15/3 738	65 (13,93)	


Sisonke 2, data from 15 nov- 20 Dec 21 (Omicron): Effectiveness against admission 84% 14 days post boost and 85% at 1-2 m

OA48. COVID-19 booster vaccine effectiveness in people with and without immune disfunction Jing Sun

National COVID Cohort Collaborative


- N3C: NIH funded, rapidly developing open science community
- N3C Enclave includes patientlevel data from over 60 clinical centers across the U.S.
- Total COVID-19+ vaccination
 - Full vaccine: 784,555
 - Booster Vaccine: 174,042

- Analytical approach
 - Propensity score matched Cox regression models for hazard of breakthrough infection
 - Multivariable logistic regression models for risk of hospitalization, invasive ventilation, and death

Without ISC

With ISC

Months since full vaccination		ugh events ollow-up Non- boosted	Sample size in boosted or non-boosted group*	Hazard Ratio (95% CI)	P-value	Booster vaccine efficacy
		group				
≤5	26	88	2006	0.33 (0.22, 0.52)	<0.001	70.5%
6	34	129	3166	0.27 (0.19, 0.40)	<0.001	73.6%
7	184	815	27148	0.23 (0.19, 0.27)	<0.001	77.4%
8	413	1102	40383	0.36 (0.32, 0.41)	<0.001	62.5%
9	389	812	28952	0.45 (0.40, 0.51)	<0.001	52.1%

Months since full		ugh events ollow-up	Sample size in boosted or	Hazard Ratio	P-value	Booster vaccine
vaccination	Boosted group	Non- boosted group	non-boosted group*	(95% CI)		efficacy
≤5	141	201	4418	0.84 (0.67, 1.04)	0.11	29.9%
6	110	185	4587	0.60 (0.47, 0.75)	<0.001	40.5%
7	157	394	12210	0.39 (0.32, 0.47)	<0.001	60.2%
8	150	376	14600	0.38 (0.31, 0.46)	<0.001	60.1%
9	75	124	8423	0.56 (0.42, 0.75)	<0.001	39.5%

	Patients withou dysfunct		Patients with immune dysfunction		
	Odds Ratio (95% CI)	P-value	Odds Ratio (95% CI)	P-value	
Hospitalization	0.13 (0.12, 0.15)	<0.001	0.21 (0.19, 0.23)	<0.001	
Invasive ventilation	0.09 (0.05, 0.19)	<0.001	0.25 (0.18, 0.34)	<0.001	
Death	0.13 (0.06, 0.30)	<0.001	0.17 (0.11, 0.27)	<0.001	

[→] Booster vaccine effectiveness against breakthrough infection is lower in IS, but still significant after 6 months of vax

[→] Reduced risk of hospitalization, invasive ventilation and death even in IS

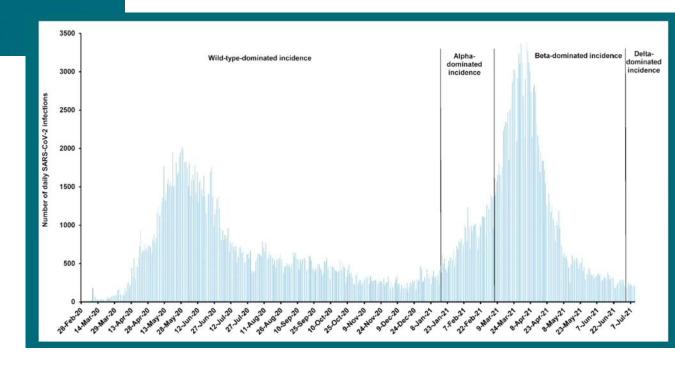
Breakthrough infections

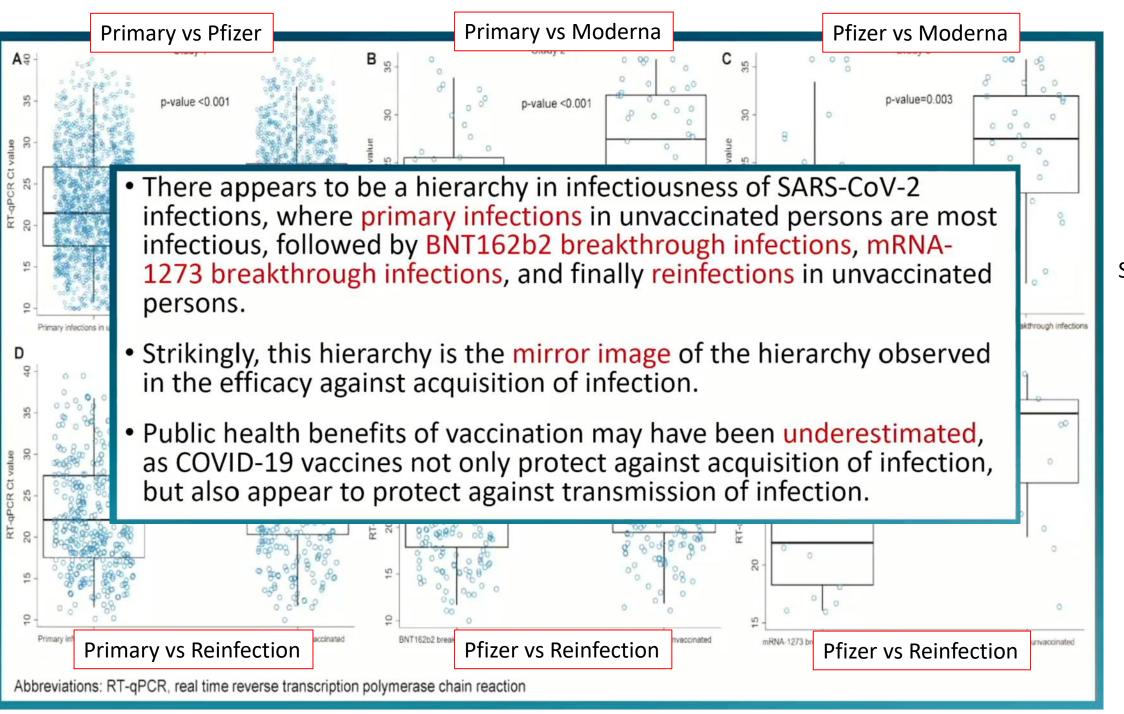
Monday February 14th
Oral Abstract Session -4

49- Infectiousness of breakthrough infections after vaccination and natural infection (Qatar)

Laith Abu-Raddad

Wednesday February 16th
Interactive Session -8


Viral load kinetics in partially or fully vaccinated individuals infected with SARS-CoV-2


Annelies Wilder-Smith

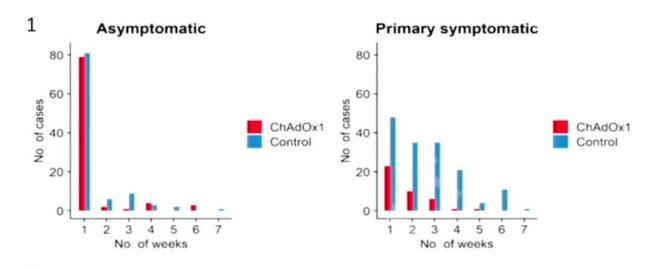
OA49- Infectiousness of breakthrough infections after vaccination and natural infection (Qatar) Laith Abu-Raddad

- Leveraging Qatar's national databases, effects of vaccination and of prior infection on SARS-CoV-2 infectiousness were investigated, between February 28, 2020 and July 11, 2021, through pairwise comparison of the RT-qPCR Ct values in matched cohorts of:
 - Primary infections in unvaccinated individuals
 - 2. Reinfections in unvaccinated individuals
 - 3. BNT162b2 (Pfizer-BioNTech) breakthrough infections
 - 4. mRNA-1273 (Moderna) breakthrough infections

Pre-Delta & Pre-Omicron

Symptom.

&

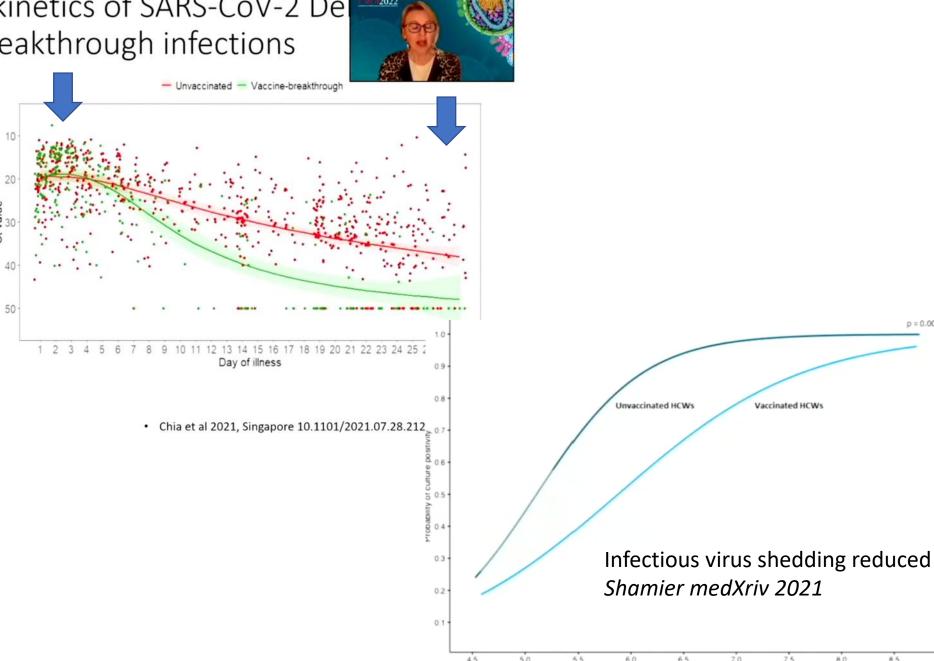

Asympt.

Viral load kinetics in partially or fully vaccinated individuals infected with SARS-CoV-2

Annelies Wilder-Smith

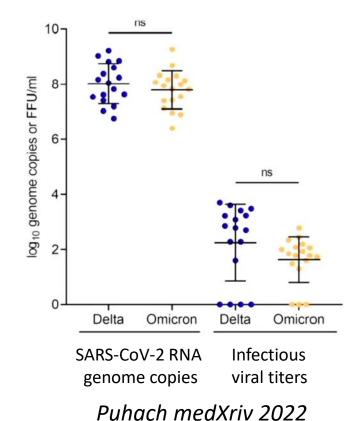
Ancestral strain/Alpha:

Evidence on COVID-19 vaccines and risk of SARS-CoV-2 transmission using viral load and duration of protection:


- AZ ChAdOx1 vaccine
- Using duration of NAAT testing positivity as a proxy measure transmissibility:
- Vaccinated group shed virus for shorter duration of time

- Pfizer BNT162b2 COVID-19 mRNA vaccine
- Using viral load as a proxy measure of transmissibility
- Vaccinated group had a lower viral load

- Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus BJ, Bibi S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) Vaccine Against SARS-CoV-2 VOC 202012/01 (B.1.1.7).
- Levine-Tiefenbrun M, Yelin I, Katz R, Herzel E, Golan Z, Schreiber L, et al. Decreased SARS-CoV-2 viral load following vaccination.


Delta: Virological kinetics of SARS-CoV-2 Del variant vaccine-breakthrough infections

- Of 218 individuals with Delta infection, 84 had received a mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and 4 received a non-mRNA
- PCR cycle threshold (Ct) values were similar between both vaccinated and unvaccinated groups at diagnosis.
- Significantly older age in the vaccine breakthrough group
- Vaccination is associated with faster decline in viral RNA load

Nasophargyngeal viral load (Log10 copies/mL)

Omicron

Impact of vaccination on transmission in relation to variant

Outcome	Wild-type and non- Delta	Delta	Omicron
Transmission			
Transmission over time	\Leftrightarrow	1	1
Ct values	1	\Leftrightarrow	
Time to viral clearance			
Infectivity	•		

Monday February 14th
Interactive Session 1

COVID-19 – John P. Moore HPV - Margaret A. Stanley Flu – Florian Krammer Herpes – Betsy Herold HIV-1 – Alexandra Trkola

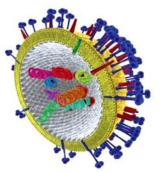
John P. Moore: COVID-19 vax: 'It helps if it prevents infection, it matters if it prevents death'

L1 Expressed in yeast or baculovirus September 2 Pentamers Self-assemble Non-infectious HPV Virus Like Particles (VLP)

Margaret A. Stanley:

HPV as success of vaccine for a strictly mucosal infection, L1 protein assembled as VLP, Ongoing work as a cancer vaccine in already infected individuals

Natural infection


- 70-80% women 20-30% men sero-convert
- Antibody response to HPV infection is typically slow and weak
- · Neutralising antibody responses are to L1
- · Cross neutralising antibodies not detected
- Antibody generated in natural infections in women is partially protective against subsequent incident infection but not in men
- Avidity index very variable

HPV L1 VLP vaccination

- In clinical trials 100% women and men sero-conver
- Peak antibody titres are 2-3 logs greater than in natural infections
- Neutralising antibody persists for >16 years post immunisation
- Both type specific and cross neutralising antibodie detected
- No breakthrough disease caused by vaccine HPV types detected after 16 years follow up in RCTs
- Avidity index consistently high
- No antibody threshold level for the protection provided by HPV vaccines has been identified
- No immune correlate

Florian Krammer: Universal Flu vaccines

Target Overview for Universal Influenza Virus Vaccines

- Internal proteins
- M2e
- Neuraminidase (NA)
- Stalk domain of the hemagglutinin (HA)

Alexandra Trkola: HIV

How Sterilizing immunity may be achieved? Getting bNAb vaccines to work:

Options:

- 1. **High bnAb titer** fully blocking incoming virus
- 2. Multi-specific bnAb activity
 - Additive effect of bnAb combinations directed to different sites
 - Goal: efficacy at overall lower bnAb titer
- 3. Multi-component vaccines (bnAb+CD8+ T cells)
 - First line defense against incoming virus by bnAbs
 - Second line defense against early infected <u>cells</u> by antibody effector functions (ADCC etc.) and cellular immune responses (CD8+ T cells)

Can mRNA vaccines solve the HIV-1 vaccine problem?

Partially - Yes

- Game changer in immunogen production and delivery (easy to manufacture and upscale)
- Will greatly speed up vaccine development.
- Multi-specific vaccines become more achievable
- Improved immunogen exposure: mRNA present for several days

Partially - No

- The mRNA platform itself does not solve the HIV-1 immunogen problem – we need immunogens that reliably induce bnAb activity
- Current SARS-CoV-2 mRNA vaccines do not sustain high level titers for extended time

New difficulties through SARS-CoV-2 vaccines

- Increasing vaccine hesitancy in many countries
- May impact also HIV-1 vaccine acceptance

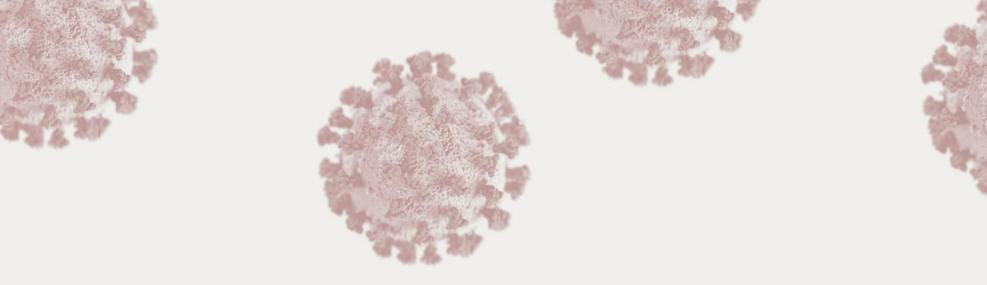
Mandates / Hesitancy

Monday February 14th

Interactive Session 3

History - Ruth Macklin

Minorities - Matifadza H. Davis


CT design

Sunday February 13th

Workshop 4

Correlates - Peter Gilbert

Effectiveness - Sheena G. Sullivan

POSTCROI

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

iMUCHAS GRACIAS!

Beatriz Mothe Pujadas, MD, PhD

bmothe@irsicaixa.es

@BeaMothe

