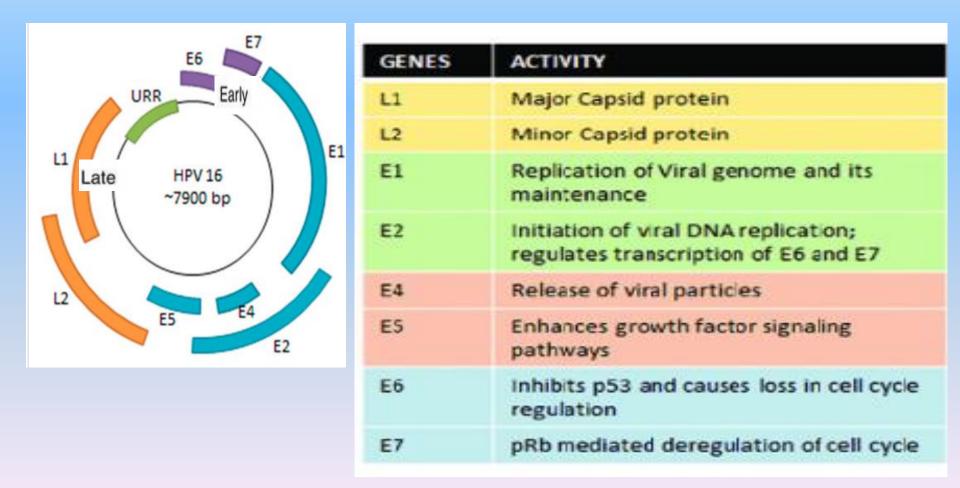
# **HORE THE BOOM HOW**How and a solution of the solution of t


21st October 2021, Barcelona

Screening in transplanted patients

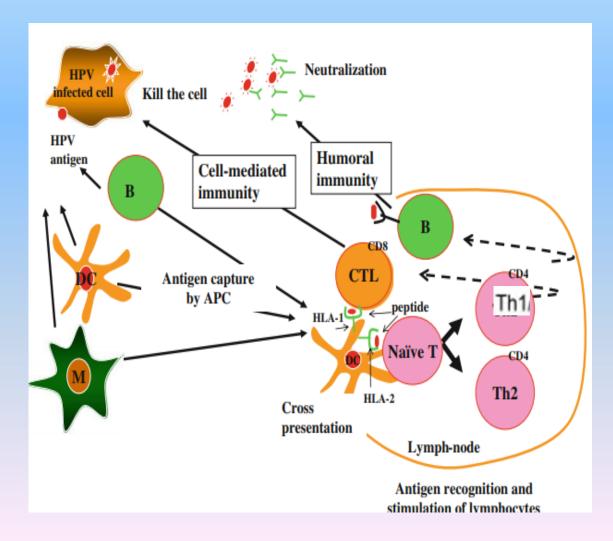
Guillem Sirera FLS, Hospital Germans Trias, Badalona

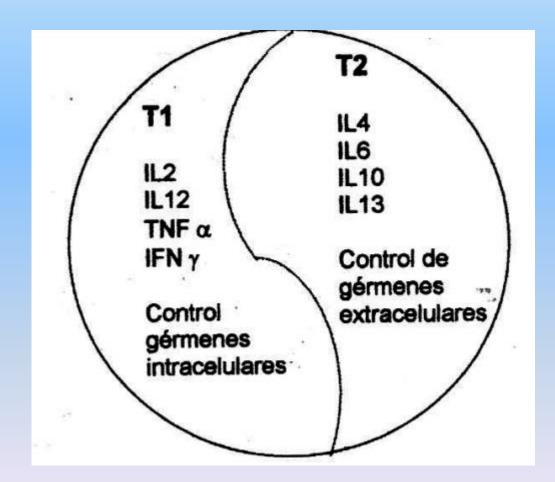
# Structure of human papillomavirus and function of its viral proteins

Viruses 2017, 9(8), 229



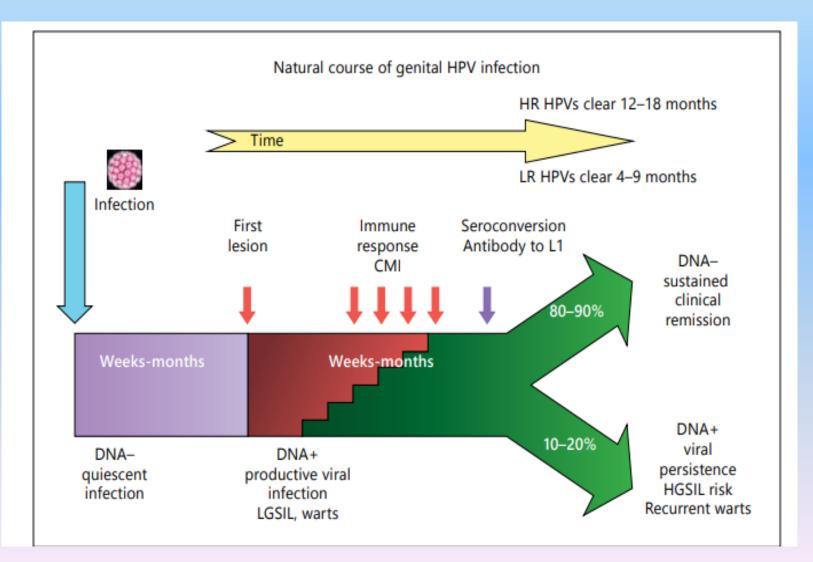
#### The human papillomavirus family and its role in carcinogenesis


Tommasino, M. (2014)


Seminars in Cancer Biology

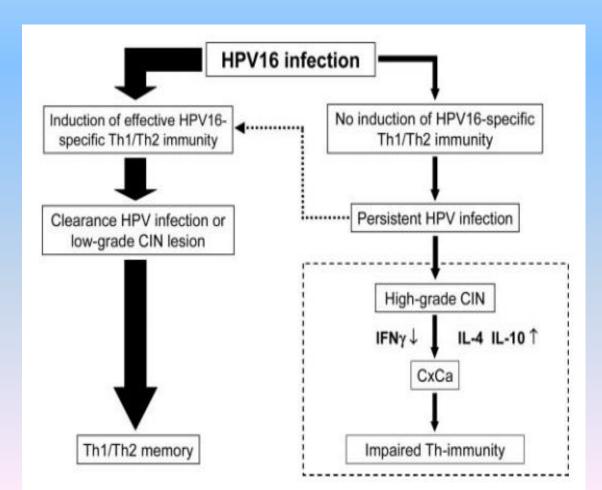
|       |                     | HPV type                                                                                                                                                            | Disease (% attributed cases)                                                                                |  |  |
|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
|       | mucosal Ihigh-risk  | HPV16                                                                                                                                                               | Cervical squamous cell carcinoma (~50)<br>Cervical adenocarcinoma (~35)<br>Oropharyngeal cancer (~25)       |  |  |
|       |                     | HPV18                                                                                                                                                               | Cervical squamous cell carcinoma (~20)<br>Cervical adenocarcinoma (~35)                                     |  |  |
| Alpha |                     | HPV31, 33, 35, 39, 45, 51, 52, 56, 58, 59                                                                                                                           | Cervical squamous cell carcinoma (~30)                                                                      |  |  |
| <     | mucosal<br>Iow-risk | HPV6, 11                                                                                                                                                            | Benign genital lesions<br>Respiratory papillomatosis                                                        |  |  |
|       |                     | HPV13, 32                                                                                                                                                           | Oral focal epithelial hyperplasia                                                                           |  |  |
|       | eous                | HPV2,3, 27, 57                                                                                                                                                      | Skin warts                                                                                                  |  |  |
| Mu    | cutaneous<br>benign | HPV1                                                                                                                                                                | Skin warts                                                                                                  |  |  |
|       | cutaneous           | HPV5 and 8                                                                                                                                                          | First beta HPV types isolated from SSC of EV indiviuals                                                     |  |  |
| Beta  |                     | HPV9, 12, 14, 15, 17, 19-25, 36-38, 47, 49,<br>75, 76, 80, 92, 93, 96, 98-100, 104, 105, 107,<br>110, 111, 113, 115, 118, 120, 122, 124, 143,<br>145, 150- 152, 159 | Likely associated with SCC in EV patients as well as<br>immuno-compromised and immuno-competent individuals |  |  |
| Gamma |                     | HPV4, 48, 50, 60, 65, 88, 95, 101, 103, 108,<br>109, 112, 115, 116, 119, 121, 123, 126-142,<br>144, 146-149, 153-158, 161-170                                       | Unknown                                                                                                     |  |  |

# Immune responses against human papillomavirus (HPV) infection


Journal of Infection and Chemotherapy, 2012

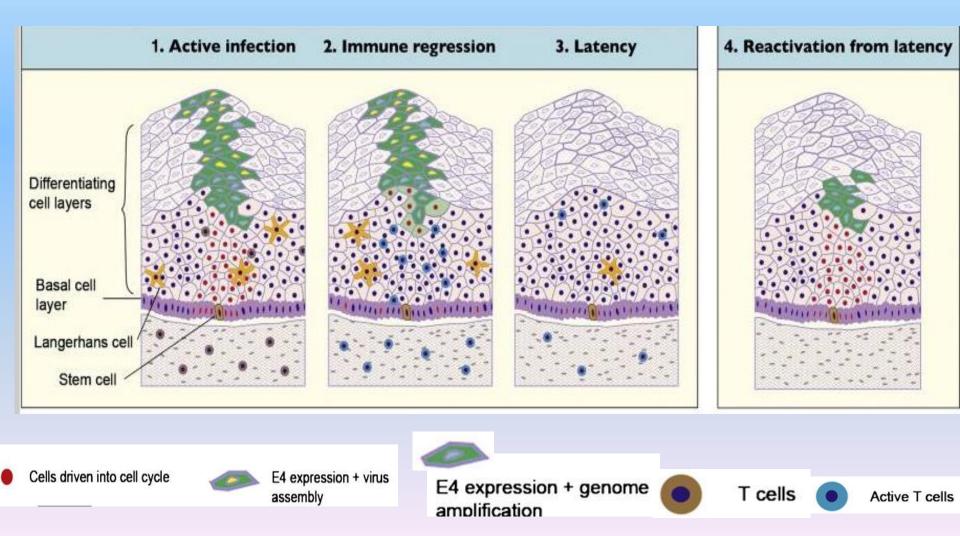





#### Host responses to infection with human papillomavirus

Stanley M.

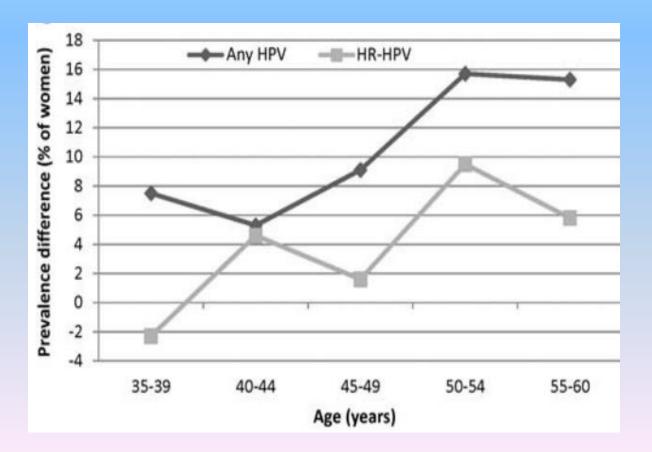



Proposed model for the association between human papillomavirus (HPV) 16-specific CD4 T-cell immunity and the development of HPV16-induced disease.

de Jong [CANCER RESEARCH 64, 5449–5455, 2004]



#### Immune clearance, latency and possible reactivation


John Doorbar et al. Vaccine 2012: 30,5



#### Relative difference in prevalence proportions of any HPV and HR-HPV between subjects with ≥5 lifetime sex partners

Patti E. Gravitt, The Journal of Infectious Diseases 2013

An increase in HPV prevalence at older ages, which may be secondary to reactivation of "latent" infection.



Natural History and Possible Reactivation of Human Papillomavirus in Human Immunodeficiency Virus–Positive Women

Howard D. Strickler, Joel M. Palefsky Journal of the National Cancer Institute, Vol. 97, No. 8, April 20, 2005

1848 VIH + and 514 VIH - women

Semiannual visits

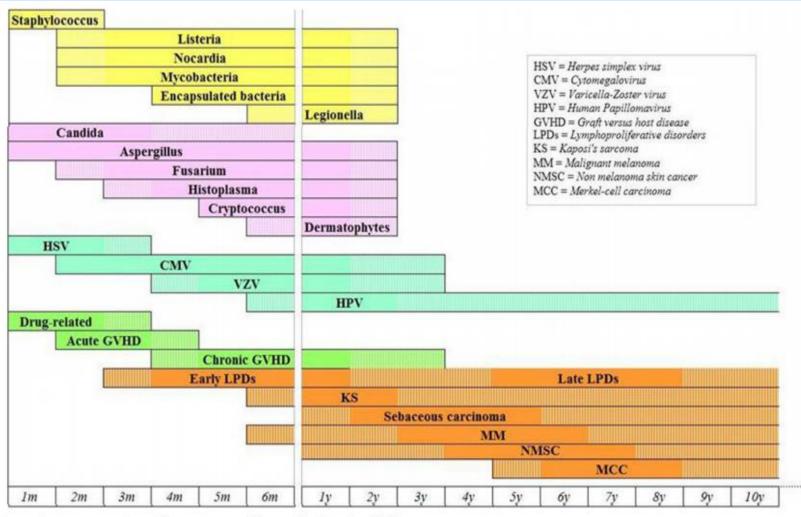
Techniques: PCR VPH /CERVIX CITOLOGY

<u>AIM OF THE STUDY</u>: HPV infection and SILs prevalence, persistence and incident.

#### **RESULTS:**

#### High risk with < 200 CD4 y > 100.000 copias/ml

Incident detection of human papillomavirus (HPV) in sexually active and inactive women


|                                                                                             | HI                      | HIV-negative            |                         |                        |
|---------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|------------------------|
| Sexual activity                                                                             | <200†                   | 200-500†                | >500†                   | women                  |
| Sexually active for<br>at least past 18 mo<br>No sexual activity for<br>at least past 18 mo | 13/42 (31)<br>7/32 (22) | 25/141 (18)<br>6/65 (9) | 14/112 (13)<br>3/46 (7) | 14/174 (8)<br>2/43 (5) |

#### **CONCLUSION:**

In HIV-positive women, plasma HIV RNA level and CD4+ count appear to have a strong association with incident detection of HPV, some of which may reflect HPV reactivation (e.g., in sexually inactive women).

#### Schematic representation of occurrence of complications in OTRs

Naldi, L Clinic Rev Allerg Immunol 2017

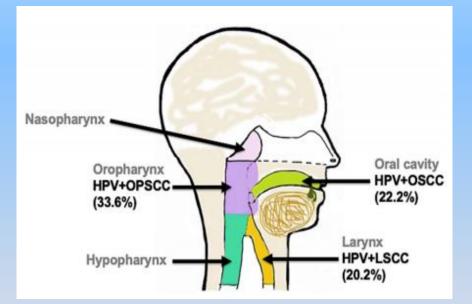


Annual manufacture encounter the formation in OTD -

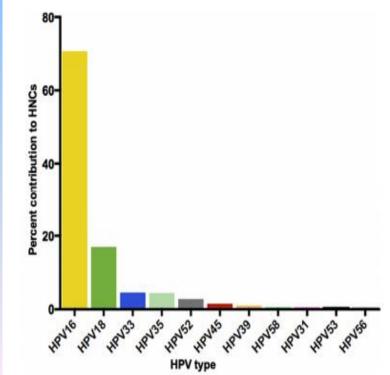
**Infection and transplantation** 

#### **EFFECTIVE IMMUNOSUPPRESSION**

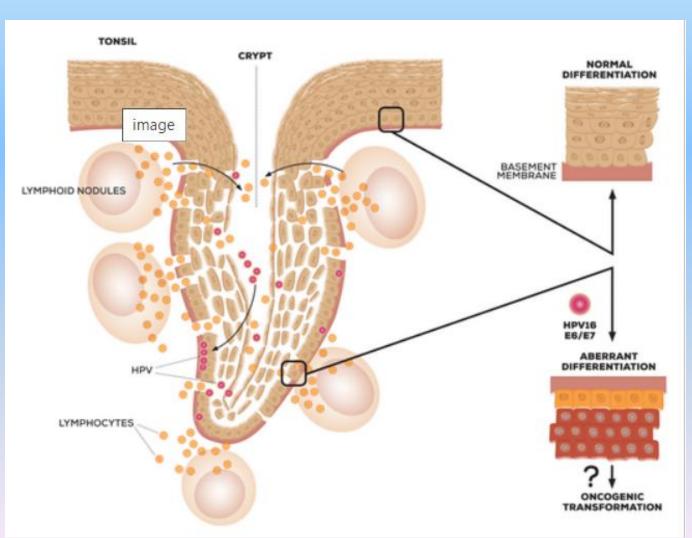
#### **Graft failure**


Infection

|      |       |       | 1. Contract (1997) |  |
|------|-------|-------|--------------------|--|
| <br> |       |       |                    |  |
|      |       | · · · | · ·                |  |
|      |       |       |                    |  |
|      |       |       |                    |  |
|      | · · · |       |                    |  |
|      | <br>  |       |                    |  |
| <br> | <br>  |       |                    |  |


# **HPV CANCER AND TRANSPLANTATION**

# 1. Head and neck squamous cell carcinoma


Distribution of human papillomavirusassociated head and neck cancers (HPV + HNC) between anatomical sites



# The prevalence/contribution of human papillomavirus types



#### Human papillomavirus (HPV) in oropharyngeal carcinogenesis



Tara A. Berman, Cancer June 2017

# Characteristics and long-term outcomes of head and neck squamous cell carcinoma after solid organ transplantation

Samer Alsidawi Oral Oncology, 2017, 72, 104–109

1995 and 2010: **33 patients** who had received a solid organ transplant (kidney, liver, heart, lung or pancreas).

#### **RESULTS:**

- The median time to diagnosis of HNSCC after transplant was 5.9 years.
- The primary site was: oral cavity in 15 patients, oropharynx in 10, larynx in 3, hypopharynx in 2, parotid in 2 and unknown in 1 patient.
- The 5-year overall survival rate was: 37 % locally advanced disease.
- Seventy five percent of patients with oropharyngeal tumors were HPV-positive and they had better outcomes (5-year overall survival rate of 67%).
- In multivariate analysis, age 60 years was a negative predictor of survival (HR 2.7; 95% CI, 1.1–6.5; P = 0.03).

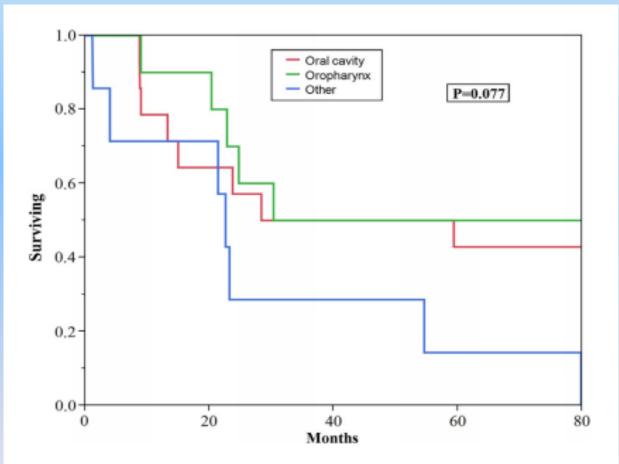
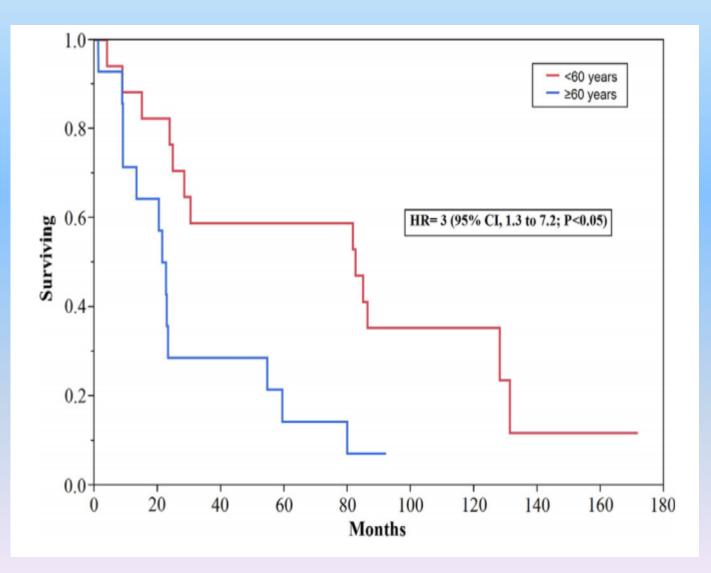
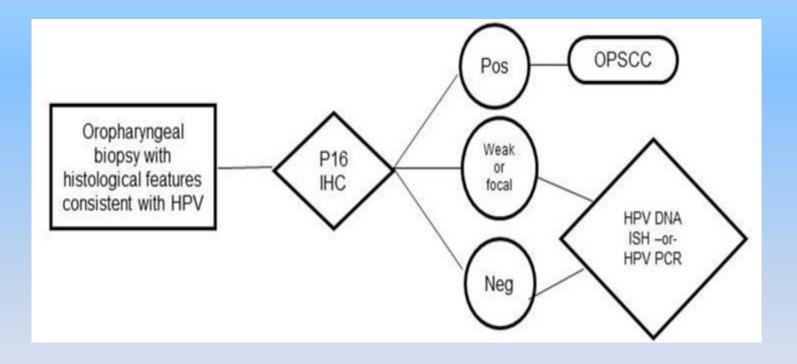




Fig. 2. Median overall survival in post-transplant patients with head and neck cancer based on primary tumor location. Other = larynx, hypopharynx, salivary, unknown primary.




#### Previous studies that evaluated outcomes of head and neck cancer after solid organ transplant.

| St                                                 | tudy                                            | Incidence<br>(%) |                               |               | Estimated Survival Rates                             |
|----------------------------------------------------|-------------------------------------------------|------------------|-------------------------------|---------------|------------------------------------------------------|
|                                                    | Duvoux et al. (1999)<br>Preciado et al. (2002)  | N/A<br>0.6       | 11<br>23                      | N/A<br>8.4    | 87% at 5 years<br>13% at 5 years                     |
|                                                    | Coordes et al. (2014)<br>Nelissen et al. (2014) | 0.86<br>1.8      | 13<br>16                      | N/A<br>5.27   | 82% at 5 years<br>62% at end of study                |
| Deeb et al. (2012)<br>Nure et al. (2013)           |                                                 | 0.5<br>1.5       | 17<br>5                       | 4–5.5<br>3.25 | 55% at 1 year<br>N/A                                 |
| Schiefele et al. (2005)<br>Roithmaier et al. (2007 |                                                 | 1.6<br>0.9       | 33<br>48                      | 7<br>7.8      | 34% at 5 years<br>58% at 5 years                     |
| Rabinovics et al. (2014)                           |                                                 | 0.4              | 30                            | 7.3           | 74% at 5 years                                       |
|                                                    | Öhman et al. (2015)                             | 1.1              | 17 oral and<br>39 lip cancers | 6.6-9.4       | 27% and 61% at 5 years for oral and lip respectively |
|                                                    | Piselli et al. (2015)                           | 1.2              | 32                            | N/A           | 35.2% at 10 years                                    |

# Algorithm for diagnosis of oropharyngeal squamous cell carcinoma

EILEEN M. BURD



# **HPV CANCER AND TRANSPLANT**

2. Skin squamous cell carcinoma

#### **Advances in Experimental Medicine and Biology**

#### Reichrath, J. 2020



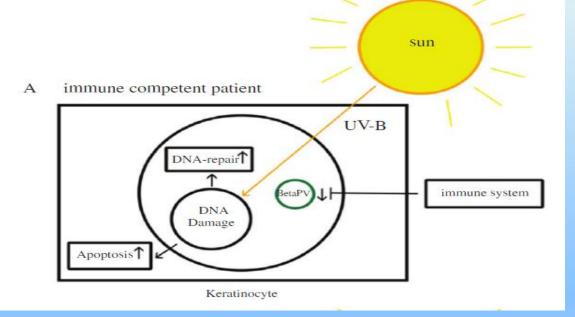
Actinic keratoses



#### Basal cell carcinomas

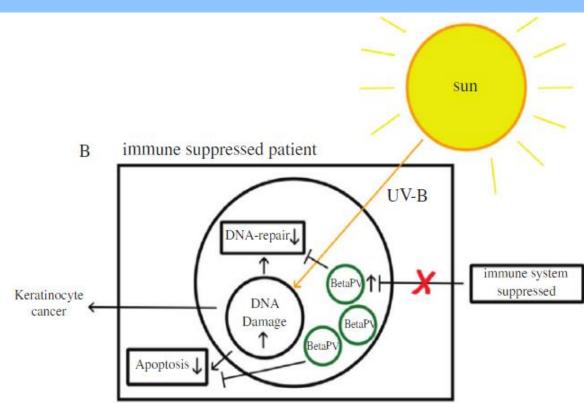


Invasive cutaneous squamous cell carcinoma


#### **Evidence supporting a role of beta-HPV in skin carcinogenesis**

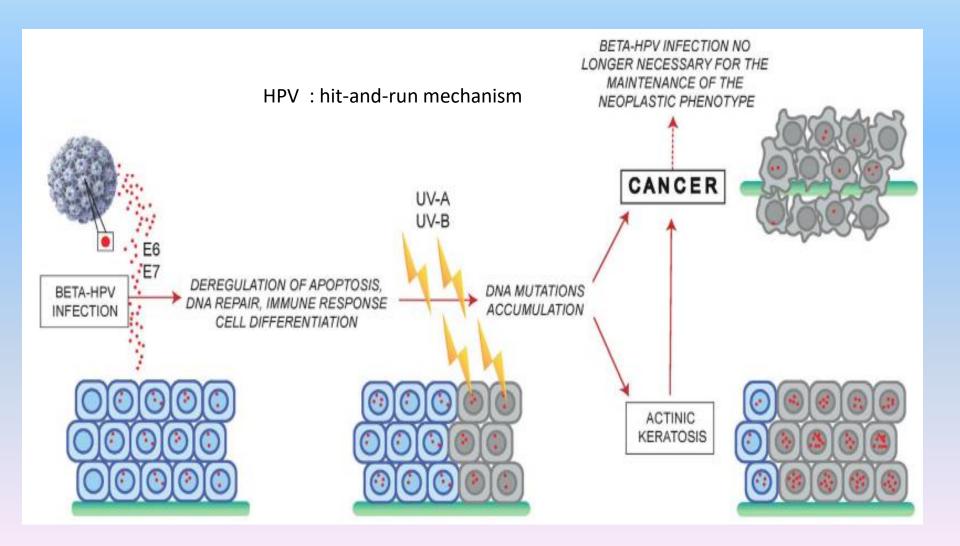
Bandolin Rev Me Virol 2014

- **1.** Epidermodysplasia verruciformis patients
  - 1922 Lewandowsky and Lutz




- High susceptibility to beta-HPV infections, (HPV 5, 8) benign wart-like cutaneous lesions. Skin carcinogenesis
- 2. Solid Organ Transplant Recipient
  - 100-fold increased risk of developing KC (mainly SCC) due to drug induced immunosuppression.
  - Beta-HPV DNA isolated in 80% of SCC (vs 40% of SCC in immunocompetent population).
  - Positivity to beta-HPV DNA in hair follicles, anti-beta-HPV serum IgG, multiple beta-HPV species and high viral load are correlated with increased risk of developing SCC.




## Koen D Quint

#### J Pathol 2015; 235: 342–354



### Mechanisms of oncogenesis in beta-HPV induced skin carcinogenesis

Luigia Bandolin Rev Med Virol 2020



## **SKIN CANCER**

#### 1. Dose-dependent effect of immunosuppression

Increased risk of SCC established for CNIs, azathioprine, mTOR inhibitors and prednisolone.

2. Increasing number of immunosuppressants prescribed

#### 3. Duration of use of immunosuppressants

High accumulated dose of azathioprine increased risk of SCC 5.4-fold after 1 year of follow-up, rising to 8.9-fold after 5 years.

#### 4. Age 50 years at transplantation

#### 5. Duration of time since transplantation

Heart: 31% of recipients had NMSC at 5 years and 43% at 10 years in an Australian cohort; Kidney: 25% NMSC cumulative incidence at 5 years, 38% at 10 years, and 70% at 20 years.

#### 6. Cumulative UV radiation exposure

- 7. Male sex
- 8. Pre-transplant NMSC

#### Lauren D. Crow Transplant International 2019

- The International immunosuppression & Transplant Skin Cancer Collaborative (ITSCC) and Transplant Skin Cancer Network (TSCN) identified specific risk factors for development of skin cancer: <u>age >50 at</u> <u>time of transplant, white race, male sex, and thoracic organ</u> <u>transplantation.</u>
- Prevention: Control by dermatologist. Caucasian high risk within 2 years.
   Photoprotection.

| Skin cancer rates by transplant organ type.                               |                                                    |                                                                                            |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| Organ                                                                     | Rate*                                              | 95% CI                                                                                     |  |  |  |  |
| Lung, heart-lung<br>Heart<br>Kidney<br>Liver<br>Pancreas, kidney-pancreas | 3520.94<br>1633.79<br>1280.02<br>1196.32<br>639.25 | 3014.07-4113.04<br>1345.59-1983.71<br>1158.19-1414.67<br>1041.86-1373.69<br>385.38-1060.35 |  |  |  |  |

\*Rates of skin cancer, including SCC, Merkel cell carcinoma, and melanoma, per 100 000 person-years, based on TSCN

# **HPV CANCER AND TRANSPLANT**

**3.** Gynecologic cancers

## Gynecologic cancers and solid organ transplantation

John B. Liao Am J Transplant. 2019; SIR per cancer site

| Author                 | Year | Transplant type                 | No. studied           | Location            | Cervix                                        | Invasive vulva/vagina                                       |
|------------------------|------|---------------------------------|-----------------------|---------------------|-----------------------------------------------|-------------------------------------------------------------|
| Adami                  | 2003 | All SOT                         | 5931                  | Sweden              | 2.0 (0.7-4.7)                                 | 23.9 (11.9-42.8)                                            |
| Kasiske                | 2004 | Kidney >65                      | 35 765                | US                  | 5.7 <sup>b</sup>                              | 8.8 <sup>b</sup>                                            |
| Vajdic                 | 2006 | RTR                             | 10 180                | Australia           | 2.5 (1.3-4.3)                                 | 22.2 (13.9-33.6)                                            |
| Grulich                | 2007 | All SOT                         | 31 977                | meta-analysi        | 2.1 (1.4-3.3)                                 | 22.8 (15.8-32.7)                                            |
| Villeneuve             | 2007 | RTR                             | 11 155                | Canada              | 1.5 (0.6-3.4)                                 |                                                             |
| Serraino               | 2007 | All SOT                         | 2875                  | Italy               | 3.3 (0.7-9.7)                                 |                                                             |
| Collette               | 2010 | All SOT                         | 37 617                | UK                  | 2.3 (1.4-3.5)                                 |                                                             |
| Engels                 | 2011 | All SOT                         | 175 732               | US                  |                                               |                                                             |
| Krynitz                | 2012 | Kidney<br>Liver<br>Heart ± Lung | 7 952<br>1221<br>1012 | Sweden              | 2.4 (1.2-4.4)<br>2.6 (0.1-15)<br>7.5 (0.9-27) | 14 (8.4-23)<br>6.9 (0.2-39)<br>11 (0.3-62)                  |
| Cheung                 | 2012 | Kidney                          | 4895                  | Hong Kong           | 7.2 (3.9-13.4)                                | -                                                           |
| Madeleine <sup>d</sup> | 2013 | All SOT                         | 72 035                | US                  | 1.0 (0.8-1.3)                                 | 7.3 (5.6-9.2)                                               |
| Na                     | 2013 | Liver, heart, lung              | 4644                  | Australia           | -                                             | 33.2 (13.3-68.3)                                            |
| Hortlund               | 2017 | All SOT                         | 6794<br>12 420        | Denmark<br>Sweden   | 2.6 (1.6-4.5)<br>2.5 (1.5-4.1)                | 7.0 (3.5-14.1) <sup>e</sup><br>11.1 (7.3-17.1) <sup>e</sup> |
| Nordin                 | 2017 | Liver                           | 4246                  | Nordic <sup>f</sup> | 1.1 (0.13-4.0)                                | 2.9 (0.4-10.5) <sup>e</sup>                                 |

# **SOLID ORGAN TRANSPLANTED**

54 articles that examined the relationship between SOT (kidney, liver, pancreas, heart, lung) and HPV, SIL, and CC published between 1990 and 2018.

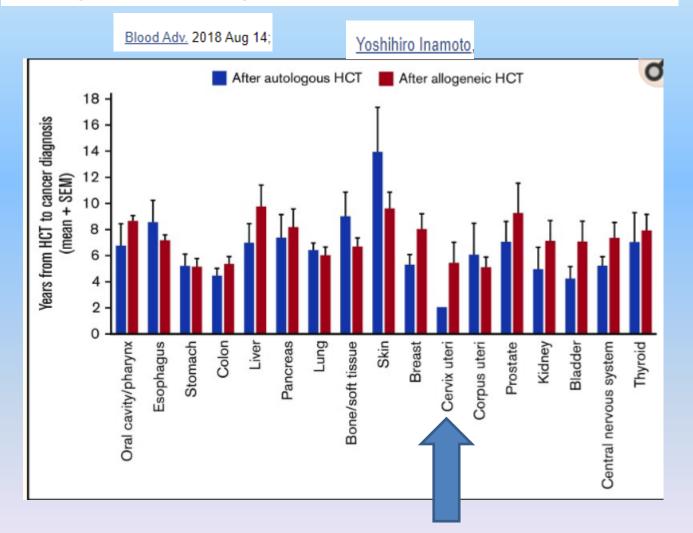
#### **CERVICAL CANCER (CC) RISK**

- CC rates in women with SOT of any organ to expected rates in the general population show SIRs ranging from 2.0 to 6.6.5.
- The increased risk of invasive CC likely begins shortly after transplant and persists throughout the years after transplant

- **Madeleine et al.** used the US Scientific Registry of Transplant Recipients from 1987 to 2009 to examine the risk of HPV-associated cancers in 73,035 women with SOT:
  - The IRR for heart and lung transplant recipients was 1.8 (95% CI = 0.8–3.7) and for liver transplant recipients was 1.2 (95% CI = 0.6–2.3) compared with the risk associated with renal transplant patients.

160 Italian women after liver transplantation for an average of 7.2 years and reported an overall SIR of 5.7 (95% CI = 0.1–31.9) for CC..

#### **SQUAMOUS INTRAEPITHELIAL LESION RISK**


Silverberg: This risk of CIN 2+ was also associated with the degree of immune suppression based on the number of immunosuppressant medication classes with RRs of 2.0 (95% CI = 0.7–5.5), 3.1 (95% CI = 1.6–6.1), and 4.9 (95% CI = 3.0–7.9) for 0, 1 to 2, and 3 or more medication classes, respectively.

- SIL in lung transplant patients, following 166 Australian women with annual cervical cytology screening after transplantation. Ten percent developed cervical abnormalities (7 had LSILs and 6 had HSILs).
- For LSIL, the incidence was 42.2 per 1,000 women screened after transplant compared with 8.3 per 1,000 in the general population, for HSIL, the incidence was 30 per 1,000 women screened posttransplant compared with 6.2 per 1,000 in the general population.

## **HPV AND Allogeneic HSCT**

• 27 articles that examined the relationship between hematopoietic stem cell transplant and HPV, SIL, and CC published between 1990 and 2018.

#### Outcomes of patients who developed subsequent solid cancer after hematopoietic cell transplantation



Risks factors and timing of genital human papillomavirus (HPV) infection in female stem cell transplant survivors: a longitudinal study

#### D Shanis Bone Marrow Transplantation (2017)

- Between 1994 and 2014, 109 females underwent HCT of whom 82 surviving transplant for >1 year.
- The cumulative proportions of any genital HPV infection at 1, 3, 5, 10 and 20 years were 4.8%, 14.9%, 28.1%, 36.7% and 40.9%.
- Pre-transplant HPV disease was strongly associated with any posttransplant HPV.
- Having either extensive or genital cGvHD was associated with increased risk of any HPV disease and a higher risk for severe genital dysplasia (CIN II–III/VIN II– III).
- But no one developed HPV-related genital cancer.
- Persistent, multifocal or severe HPV disease occurred more frequently than in healthy populations.

## Moscicki, A.-B 2019

#### **RISK GROUP CATEGORY:**

Solid organ transplant, Allogeneic hematopoietic stem cell, Genital GVHD or chronic GVHD.

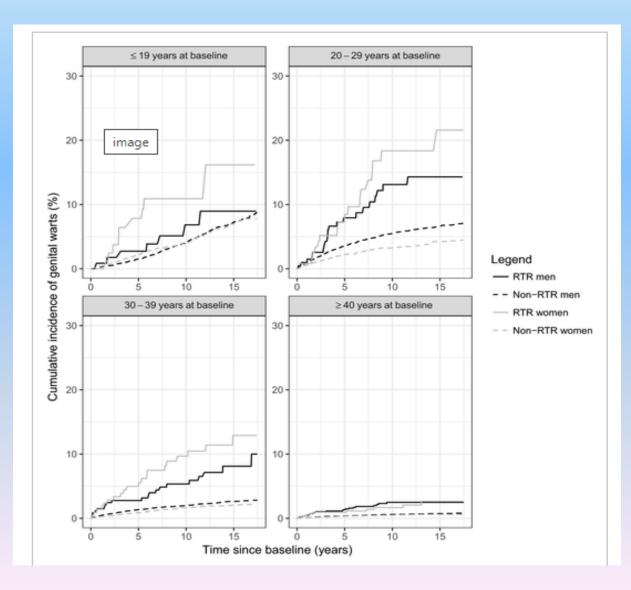
### **CERVICAL CANCER SCREENING RECOMMENDATIONS:**

- Cytology is recommended if younger than 30 years.
- Co-testing is preferred, but cytology is acceptable if 30 y or older.
- If using cytology alone, perform annual cervical cytology. If results of 3 consecutive cytology results are normal, perform cytology every 3 y.
- If using co-testing, perform baseline co-test with cytology and HPV. If result of cytology is normal and HPV is negative, co-testing can be performed every 3 y.
- If transplant before the age of 21 y, begin screening within 1 y of sexual debut.
- Continue screening throughout lifetime (older than 65 y). Discontinue screening based on shared discussion regarding quality and duration of life rather than age.
- Screen patients on dialysis and posttransplant similarly.

## **HPV CANCER AND TRANSPLANT**

4. Anal cancer

## Risk of genital warts in renal transplant recipients—A registry-based, prospective cohort study


Helle Kiellberg Larsen Am J Transplant 2019 Jan

32.68 RTRs / 162.910 non-RTRs without GWs 1 year before baseline.

#### **RESULTS:**

- RTRs had higher hazard of GWs than non-RTRs (HR = 3.30; 95% confidence interval, 2.76-3.93, adjusted for sex, age, education, and income
- Hazard More pronounced in female than in male RTRs
- The hazard tended to be higher in RTRs with functioning grafts compared with RTRs on dialysis after graft failure.
- The hazard of GWs was increased <1 year after transplantation and remained increased during ≥10 years.

## Cumulative incidence of genital warts in Danish renal transplant recipients (RTRs) 1996-2015 and a nontransplanted control cohort -



## Risk of anal high-grade squamous intraepithelial lesions among renal transplant recipients (RT R)compared with immunocompetent controls

Larsen HK Clin Infect Dis 2020 Jun

Study the prevalence of anal high grade intraepithelial lesions (HSIL) in RTRs compared with immunocompetent controls and risk factors for anal HSIL in RTRs.

247 RTRs and 248 controls in this cross-sectional study.

#### **RESULTS:**

RTRs had higher anal HSIL prevalence than controls:

Men: 6.5% vs 0.8%,
 Women: 15.4% vs 4.0%,
 Anal hrHPV: 33.8% vs 9.5%
 Having had receptive anal sex :
 Genital warts:
 OR adjusted=6.1, 95% CI: 2.14-24.10).
 OR adjusted=6.06, 95% CI: 2.16- 20.27)
 OR adjusted=6.23, 95% CI, 2.23-19.08)
 OR adjusted=4.21, 95% CI: 1.53-11.48

**CONCLUSIONS :** Screening for anal HSIL in RTRs should be considered.

# Anogenital malignancies in women after renal transplantation over 40 years in a single center

Kim A P Meeuwis Transplantation 2012

1023 women, who underwent a renal transplantation between 1968 and 2008.

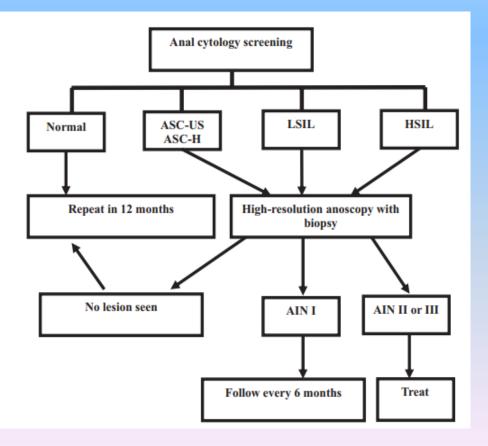
Sixteen anogenital malignancies (1.6%) were found: vulva (n=6), cervix (n=5), and anus (n=5).

The median interval between transplantation and diagnosis of malignancy was 136 months (range, 16-288 months).

## A meta-analysis of anal cancer incidence by risk group: Toward a unified anal cancer risk scale

## Gary M. Clifford

TABLE 1 Anal cancer incidence in US transplant cancer match study 1987 to 2015, by age, gender and years since transplant


|               | Males     |              |                                         | Females |              |                                         |
|---------------|-----------|--------------|-----------------------------------------|---------|--------------|-----------------------------------------|
|               | Cases     | Person-years | IR per 100 000<br>person-years (95% CI) | Cases   | Person-years | IR per 100 000<br>person-years (95% CI) |
| All           | 99        | 1 050 327    | 9.4 (7.7-11.5)                          | 128     | 676 462      | 18.9 (15.8-22.5)                        |
| Age group (y  | )         |              |                                         |         |              |                                         |
| <30           | 0         | 116 804      | 0.0 (0.0-3.2)                           | 3       | 97 399       | 3.1 (0.6-9.0)                           |
| 30-44         | 9         | 194 004      | 4.6 (2.1-8.8)                           | 19      | 145 121      | 13.1 (7.9-20.4)                         |
| 45-59         | 42        | 403 603      | 10.4 (7.5-14.1)                         | 56      | 240 592      | 23.3 (17.6-30.2)                        |
| ≥60           | 48        | 335 916      | 14.3 (10.5-18.9)                        | 50      | 193 350      | 25.9 (19.2-34.1)                        |
| Years since t | ransplant |              |                                         |         |              |                                         |
| <5            | 43        | 657 746      | 6.5 (4.7-8.8)                           | 46      | 412 509      | 11.2 (8.2-14.9)                         |
| 5-9           | 28        | 278 346      | 10.1 (6.7-14.5)                         | 42      | 183 231      | 22.9 (16.5-31.0)                        |
| ≥10           | 28        | 114 235      | 24.5 (16.3-35.4)                        | 40      | 80 722       | 49.6 (35.4-67.5)                        |

Abbreviations: CI, confidence interval; IR, incidence rate.

Human papillomavirus infection in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice

Peter V Chin-Hong Clin Transplant 2019

### Anal cancer screening in transplant patients





## Eur J Obstet Gynecol Reprod Biol X. 2019

Emeline Vinkenes,

Guidelines and recommendations for HPV vaccination.

Professional society, Country: Solid organ transplant recipients (SOTR):

| SST, Denmark | No recommendation.                                                                                                              |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| WHO          | All immunocompromised, including transplant recipients<br>(regardless of whether they are receiving antiretroviral<br>therapy). |  |  |  |
| CDC, USA     | All immunocompromised both females and males, from 9 to 26 years of age.                                                        |  |  |  |
| IDSA, USA    | All SOTR from 11 to 26 years of age(21).                                                                                        |  |  |  |
| PHAC, Canada | Before or after transplantation in females and males from 9 to                                                                  |  |  |  |
|              | 26 years of age(22).                                                                                                            |  |  |  |
| AGDH,        | Before or after transplantation in both females and males from                                                                  |  |  |  |
| Australia    | 9 years of age and above(23).                                                                                                   |  |  |  |
| HSE, Ireland | Before or after transplantation in patients from 10 years of age<br>and above(24).                                              |  |  |  |

## Human Papillomavirus Vaccination in Male and Female Adolescents Before and After Kidney Transplantation

## Corina Nailescu Front Pediatr 2020

- The quadrivalent HPV vaccine was administered to girls and boys age 9-18.
- Subjects were recruited for three groups:
  - 1. 18 CKD: chronic kidney disease stages 3, 4, and 5 not on dialysis
  - 2. 18 Dialysis
  - 3. 29 KT recipients
- The outcome consisted of antibody concentrations against HPV 6, 11, 16, and 18.
- Geometric mean titers (GMTs) and seroconversion rates were compared.
- Vaccine tolerability was assessed.

#### **RESULTS** :

- KT patients had significantly lower GMTs after vaccination for all serotypes.
- The percentages of subjects who reached seroconversion were overall lower for the KT group, reaching statistical significance for HPV 6, 11, and 18.

## Immunogenicity And Safety Of The Nine-Valent Human Papillomavirus Vaccine In Solid Organ Transplant Recipients And HiV-Infected Adults

### Lise Boey Clin Infect Dis 2020 Dec

They investigated the immunogenicity with respect to HPV types 6/11/16/18/31/33/45/52/58 and the safety of the 9vHPV vaccine in HIV-infected persons and recipients of a kidney, lung or heart transplant.

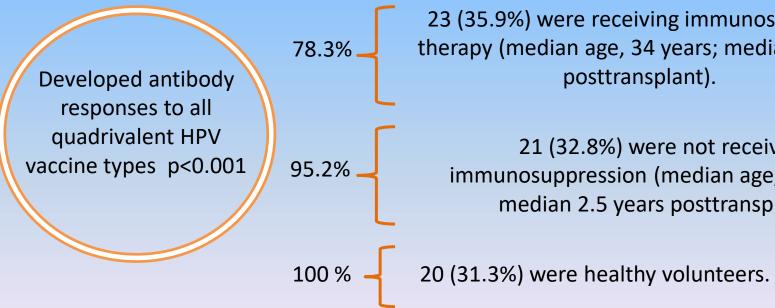
#### METHODS:

- Is a phase III investigator-initiated study in: **100 HIV-infected** persons (age: 18-45 years) and **171 SOT recipients** (age: 18-55 years).
- Primary outcome was seroconversion rates to the 9vHPV types at month 7.
- Secondary outcomes were geometric mean titers (GMTs) and frequency of adverse events (AEs)

#### **RESULTS:**

- All HIV-infected participants seroconverted for all HPV types, but seroconversion ranged from 46% for HPV45 to 72% for HPV58 in SOT recipients.
- GMTs ranged from 180 to 2985 mMU/ml in HIV-positive participants and from 17 to 170 mMU/ml in SOT recipients, depending on the HPV type.
- No patients died during the study.

#### **CONCLUSION**:


Immunogenicity of the 9vHPV vaccine is high in HIV-infected persons but suboptimal in SOT recipients. The vaccine is safe and well tolerated in both groups.

Immune Response Following Quadrivalent Human Papillomavirus Vaccination in Women After Hematopoietic Allogeneic Stem Cell

JAMA Oncol. 2020 May:

Pamela Stratton.

#### 64 vaccinated women



23 (35.9%) were receiving immunosuppressive
78.3% therapy (median age, 34 years; median 1.2 years posttransplant).

21 (32.8%) were not receiving immunosuppression (median age, 32 years; median 2.5 years posttransplant).

## Human papillomavirus infection in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice

Peter V. Chin-Hong Clinical Transplantation 2019

#### **RECOMMENDATIONS:**

- Immunize all male and female transplant patients (ideally prior to transplantation) aged 9-26 (target age: 11-12) with three doses of the HPV nine-valent vaccine.
- The quadrivalent vaccine can also be used in males and females, and females can also receive the HPV-bivalent vaccine (strong recommendation, moderate-quality evidence).
- Males and females up to age 45 may also be vaccinated with three doses of the 9-valent vaccine (weak recommendation, low-quality evidence).
- Immunize transplant recipients aged 15-26 even if they already have anogenital warts (weak recommendation, low-quality evidence).
- For individuals with a known history of HPV disease, consider assessing for cervical/anal lesions prior to transplant (weak recommendation, low-quality evidence).

## **GRACIAS POR SU ATENCIÓN**

