

19ª edición

POSTCRO

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

3 de marzo del 2022 La Pedrera-Casa Milà, Barcelona con retransmisión en directo

Actualización en Epidemiología, Clínica y Antivirales frente a la COVID-19 en Pacientes Infectados por el VIH

Dr. José M^a Miró

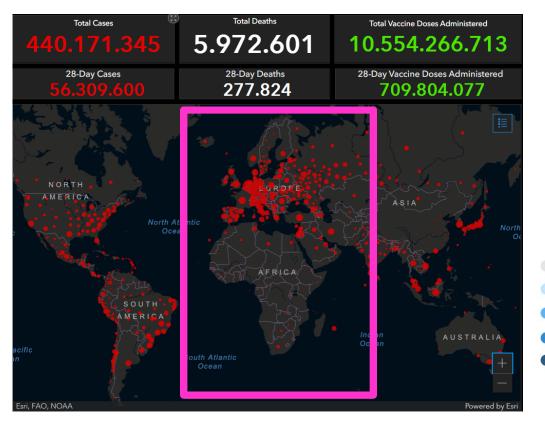
Servicio de Enfermedades Infecciosas Hospital Clínic – IDIBAPS Universidad de Barcelona Barcelona E-mail: jmmiro@ub.edu

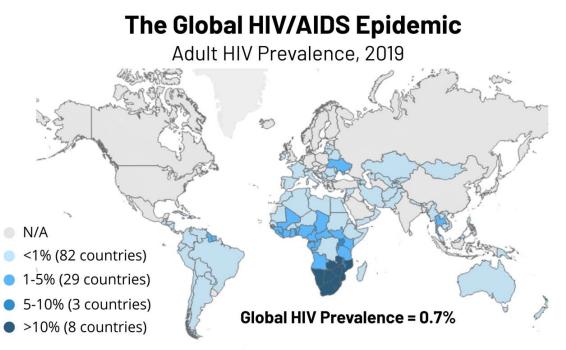
CROIN Update on Epidemiology, Outcomes and Antivirals against COVID-19 in PLHIV

- Epidemiology
- Outcomes in PLHIV
- Tenofovir or not tenofovir, that's the question
- Antivirals, no data in PLHIV
- Take home messages

19ª edición

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"


COVID-19 Global Cases


https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6; accessed on March 3rd 2022; *Murray CJL. Lancet Jan 17, 2022

SARS-CoV-2 & HIV Epidemics

SARS-CoV-2 (2022) = 440 million

HIV Infection (2021) = 38 million

Ambrosioni J et al. Lancet HIV. 2021; 8:e294-e305.

Impact of COVID-19 in the health care of PLHIV in high-income countries

Reductions in testing and diagnosis rates for chlamydia, gonorrhea, and HIV and increase of syphilis in USA and Europe^{1,2}. Delayed diagnosis².

PrEP programs engagement declined early in the COVID-19 pandemic in several countries, with partial rebound coinciding with the easing of public health restrictions^{2,3}

Disruption of HIV care continuum outcomes including engagement in care, ART, and loss of viral suppression in several USA cities⁴⁻⁶

Reduced mental health care contact rates during the COVID-19 lockdown in Germany⁷

Rapid implementation of telemedicine during the COVID-19 pandemic improved the indicators of health care utilization and disease monitoring in USA⁸

1.- Chang JJ et al. CROI 2022; Oral-13; 2.- De IL Court F et al. CROI 2022; Poster-Y05; 3.- Toy J et al. CROI 2022; Poster-Y08; 4.- Castel A et al. CROI 2022; Poster-Y08; 6.- Spinelli MA et al. CROI 2022; Poster-Y01; 7.- Wettstein AE et al. CROI 2022; Poster-Y06; 8.- Masters MCC et al. CROI 2022; Poster-Y08.

CROIN Update on Epidemiology, Outcomes and Antivirals against COVID-19 in PLHIV

- Epidemiology
- Outcomes in PLHIV
- Tenofovir or not tenofovir, that's the question
- Antivirals, no data in PLHIV
- Take home messages

19ª edición

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

Asymptomatic COVID-19 is extremely common among PLHIV in USA

- REPRIEVE is an international primary atherosclerotic cardiovascular disease (ASCVD) prevention RCT of pitavastatin calcium vs. placebo among 7,770 PWH ages 40-75 on antiretroviral therapy (ART).
- Serological study performed in a representative subset of 2,464 participants from May 2020 to February 2021. Median age 53 years, 35% female sex, 47% Black or African American race, median CD4 count 649 c/mm3, and 97% with HIV VL <400 cp/mL.
- SARS-CoV-2 infection was defined as either presence of SARS-CoV-2 IgG or IgA RBD protein (anti-spike) antibodies or reporting of confirmed COVID-19 disease prior to the date of antibody sampling in the absence of prior COVID-19 vaccine receipt.
- We distinguished symptomatic from asymptomatic disease based on completed COVID-19 symptom questionnaire.

- SARS-CoV-2 Infection	
- Asymptomatic	
- Symptomatic	

- Symptom questionnaires (N=304) 120 (39%) reported at least 1 symptom of COVID-19 disease, but 184 (61%) reported no symptoms.
- Asymptomatic infection was more likely to be from non-high regions, of Black or African American race, and to be non-obese.
- Potential differences in symptomatic disease based on ART-regimen were noted, but no clinical differences between the groups for CD4 counts or HIV viral suppression were observed.

Weir IR on behalf REPRIEVE investigators. CROI 2022; Poster-R01.

318 (13%)

260 (82%)

58 (18%)

Variables associated with COVID-19 hospitalization in PLHIV. A multicenter Argentinian study

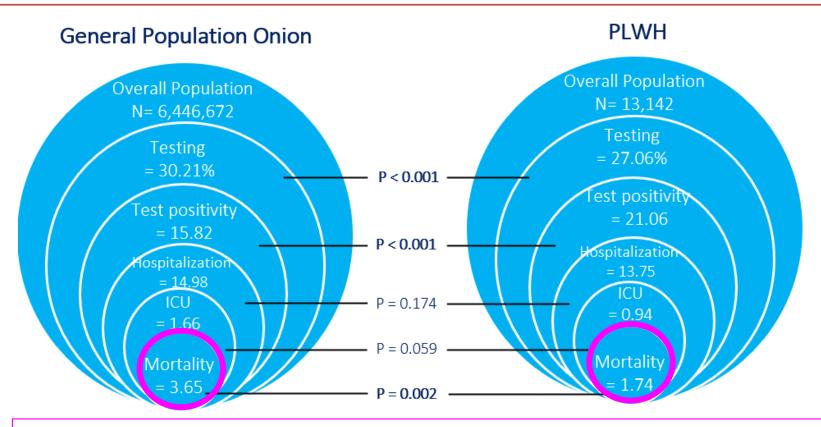
- Adult PLWH with confirmed SARS-CoV-2 infection were enrolled in a prospective observational multicentric cohort study to evaluate hospitalization due to COVID-19. Participating centers included nationwide HIV clinics and general hospitals from Argentina.
- Of 844 PLHIV enrolled, 21.8% required hospital admission due to COVID-19.
- A multivariable logistic regression model was performed to identify variables associated with hospitalization due to COVID-19

- Age, ≥60-year
- Comorbidities
- Female sex
- CD4 count >500 cells/mm3

1.82 (1.07- 3.11) 1.73 (1.22- 2.46) 0.60 (0.41-0.87) 0.30 (0.14-0.66)

- Hospitalization in PLHIV was associated with traditional risk factors (age, comorbidities).
- Female sex and high CD4+ T-cell count provide a significant reduction in the risk of admission to hospital.
- ART and detectable viral load had no impact on hospitalization.

Rombini F et al. CROI 2022; Poster-N03.


Outcomes of hospitalized PLHIV with COVID-19 = General population (GP). A Swedish study

- Hospitalized adults with a primary diagnosis of COVID-19 in Sweden between Feb 1, 2020, and Aug 31, 2021.
- Using multivariate logistic regression models, we estimated adjusted odds ratios (aORs) and 95% confidence intervals (CIs) for severe COVID-19 (intensive care admission or 90-day mortality), by HIV-status

	PLHIV N=121	GP N=64,764	<i>P</i> -value
- Age, yr (median)	57	65	<0.001
- Males (%)	68%	57%	0.015
- Severe COVID-19	14%	23%	0.032
 Mortality at 90 days 	8%	16%	0.032

- There was no difference in level of education, level of income or number of comorbidities.
- Most hospitalized PWH had undetectable HIV-RNA (93%) and high CD4 counts (median 560, IQR 376-780).
- PLHIV admitted to the ICU were six times more likely treated with tocilizumab compared to HIV-negative patients (aOR 6.1, 95% CI 1.5-24.5)
- HIV status was not associated with higher odds of severe COVID-19 (aOR 0.88, 95% CI 0.52-1.49).
- In PLHIV, higher age (aOR 1.08, 95% CI 1.02-1.15) and one or more comorbidities were associated with severe COVID-19 (aOR 4.3, 95% CI 1.1-16.7, ref PWH with no comorbidity). Level of HIV-RNA, current CD4, nadir CD4, and mode of HIV-transmission was not associated with severe COVID-19.
 Möller I et al. CROI 2022; Poster-R01.

Outcomes of COVID-19 between PLHIV and the general population of Catalonia (Spain) in 2020: The PISCIS Study

PLWH were tested less frequently for SARS-CoV-2 than the general population, had a higher positivity rate, similar hospitalization rates and lower ICU admission and SARS-CoV-2-associated mortality rates

Nomah DK et al. EACS. 2021; Nomah DK et al. Enferm Infecc Microbiol Clin. 2022, in press

Impact of COVID-19 vaccines in plasma HIV-1 RNA viral load in PLHIV

- From January 2021 to April 2021, vaccination with mRNA1273 (Moderna) and BNT162b2 (BioNTech/Pfizer) was offered to every individual with HIV registered at our institution who fulfilled vaccination criteria and consented to routine vaccination.
- The study sample included 131 individuals (median age: 54 years [interquartile range (IQR): 47-60.5]); male: 70.2%; median baseline CD4-T cell: 602 cells/µl [IQR: 445.0-825.5]).
- Plasma HIV viral load data were collected for 129 patients at the time of the first dose (M0) and 30 days later (M1); for 124 patients, 30 days after the second dose (M2); and for 42 patients, 6 months after the first dose (M6).

	VL >20 c/mL	New VL >20 c/mL
- Baseline (N=129)	15.5%	-
- Month 1 (N=129)	10.1%	5 (4%)
- Month 2 (N=124)	12.1%	4 (3%)
- Month 6 (N=42)	14.3%	-

- Plasma HIV-RNA levels returned below the detection threshold of 20 copies/mL at the subsequent measure.
- In PLHIV on effective antiretroviral drugs, only minor or transient effects of mRNA vaccines on HIV-1 RNA levels were observed.

Rombini F et al. CROI 2022; Poster-N03.

CROIN Update on Epidemiology, Outcomes and Antivirals against COVID-19 in PLHIV

- Epidemiology
- Outcomes in PLHIV
- Tenofovir or not tenofovir, that's the question
- Antivirals, no data in PLHIV
- Take home messages

19ª edición

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

Some studies suggested a protective role of TDF (not TAF) against SARS-CoV-2 infection & COVID-19 Severity

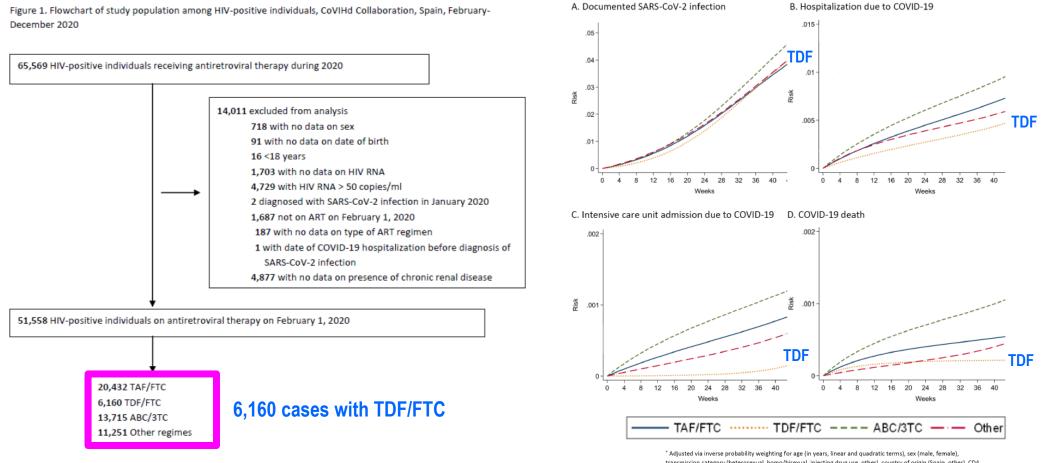
- Cohort study performed in 60 Spanish HIV clinics between 1 February and 15 April 2020, including 77,590 HIV-positive persons on ART.
- 236 were diagnosed with COVID-19, 151 were hospitalized, 15 were admitted to the ICU, and 20 died.
- The risk of COVID-19 among HIV-infected patients was **300 cases/100,000 patients-year** (330 cases/100,000 patients-year in GP)
- Among 12,395 patients on TFD/FTC, the COVID-19 risk was the lowest (105/100,000 p-y) and none was admitted to the ICU or died.

Characteristics	COVID-19 Diagnosis (95% CI)	COVID-19 Hospital Admission (95% CI)	COVID-19 ICU Admission (95% CI)	COVID-19 Death (95% CI)
NRTI	dis 2d		ta ta	
TDF/FTC	16.9 (10.5-25.9)	10.5 (5.6-17.9)	0 (-2.9)†	0 (-2.9)†
TAFIFTO	39.1 (31.0-41.0)	20.3 (13.2-20.7)	2.7 (1.1-0.5)	3.9 (1.9-1.2)
ABC/3TC	28.3 (21.5-36.7)	23.4 (17.2-31.1)	3.0 (1.1-6.5)	4.0 (1.7-7.8)
Other regimens	29.7 (22.6-38.4)	20.0 (14.2-27.3)	1.0 (0.1-3.7)	1.0 (0.1-3.7)

Spanish PNS. EPICOS PrEP RCT in HCW: TDF/FTC±HCQ±PBO.

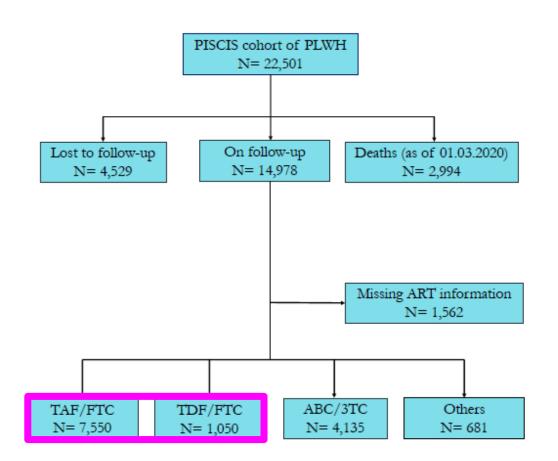
→ ClinicalTrials.gov Identifier: NCT04334928

Del Amo J et al, Ann Intern Med Jun 26 2020. doi: 10.7326/M20-3689.


TDF/TAF & SARS-CoV-2: Controversial Results

<u>Selection biases present</u>: it is unlikely that TDF is prescribed to older PLWH or those with known comorbidities (CVD, diabetes, or kidney disease), all identified as an independent risk factors for poorer COVID-19 outcomes

Clinical Trials are ongoing (NCT04334928, NCT04712357, NCT04359095, and NCT04890626)

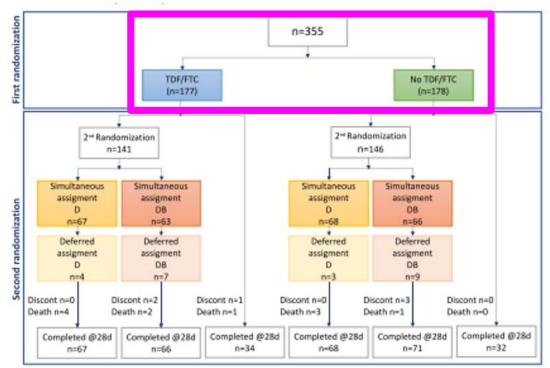

TDF/FTC lowers COVID-19 severity among PLHIV with virological control: The CoRIS Study

Del Amo J et al, CROI 2022; Poster-V05.

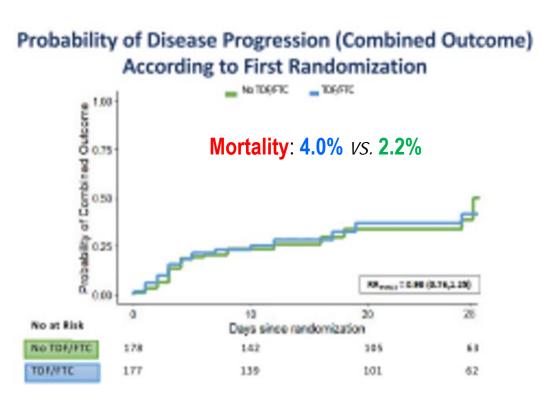
Augustea via inverse probability weiginsing for age (in years, linear and quadratic terms), sex (male, female), transmission category (heterosexual, homo/bisexual, injecting drug use, other), country of origin (Spain, other), CD4 (<350, 350-500, >500 cells/mm3), and hypertension, diabetes, chronic renal disease, cardiovascular disease, and treatment with immunosuppressants or corticosteroids.

TDF/FTC or TAF/FTC were not associated with COVID-19 infection or severity among PLHIV: The PISCIS Study

		TDF/FTC vs ABC/3TC						
	TDF/FTC	TDF/FTC ABC/3TC* P uOR aOR (95% CI) (95% CI)						
SARS-CoV-2 diagnosis	No. (%)	No. (%)	0.05	0.76 (0.59 - 0.98)	0.81 (0.61 - 1.07			
Positive	81 (9.7)	308 (12.4)						
Clinical severity			0.51					
Hospitalization	5 (6.2)	31 (10.1)		0.48 (0.16 - 1.13)	0.49 (0.14 - 1.27			
ICU admission	0 (0)	1 (0.3)						
Death	0 (0)	6 (2.0)						


	TAF/FTC vs TDF/FTC					
	TAF/FTC*	aOR (95% CI)				
SARS-CoV-2 diagnosis	No. (%)	No. (%)	0.03	0.75 (0.57 - 0.96)	0.81 (0.61 - 1.07)	
Positive	315 (12.6)	81 (9.7)				
Clinical severity			0.60			
Hospitalization	32 (10.2)	5 (6.2)		0.47 (0.16 - 1.10)	0.47 (0.14 - 1.22)	
ICU admission	1 (0.3)	0 (0)				
Death	5 (1.6)	0 (0)				

*Reference group for odds ratios. Adjusted model: Adjusted for country of origin, socioeconomic status, CD4 count (continuous variable), time in years on ART, CD4/CD8 ratio, hypertension, chronic kidney disease, and metabolic disease.


Nomah DK et al, CROI 2022; Poster-H01.

<u>No beneficial effect of TDF/FTC</u> for high risk patients with mild COVID-19: The PANCOVID RCT

- Multicenter open label pragmatic RCT in 25 Spanish centers with mild SARS-CoV2 infection.
- Patients older that 60 years or younger if they had at least two comorbidities were randomized: 1st TDF/FTC; and, 2nd Dexamethasone/Baricitinib.
- The primary endpoint was 28-day mortality. Secondary endpoint was a combined outcome of disease progression, ICU admission or death.

* 2nd randomization: At any moment during the trial, participants with room air O2 saturation <95% and at least one increased inflammatory biomarker.</p>

Velasco M et al, CROI 2022; Poster-H01.

CROIN Update on Epidemiology, Outcomes and Antivirals against COVID-19 in PLHIV

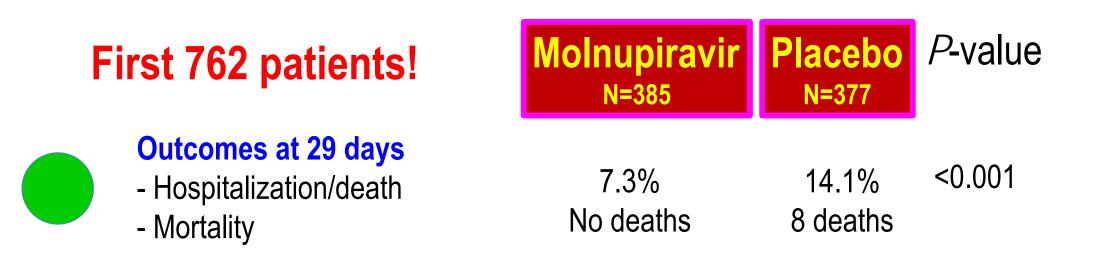
- Epidemiology
- Outcomes in PLHIV
- Tenofovir or not tenofovir, that's the question
- Antivirals, no data in PLHIV
- Take home messages

19ª edición

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

Remdesivir – PINETREE RCT in non-hospitalized patients

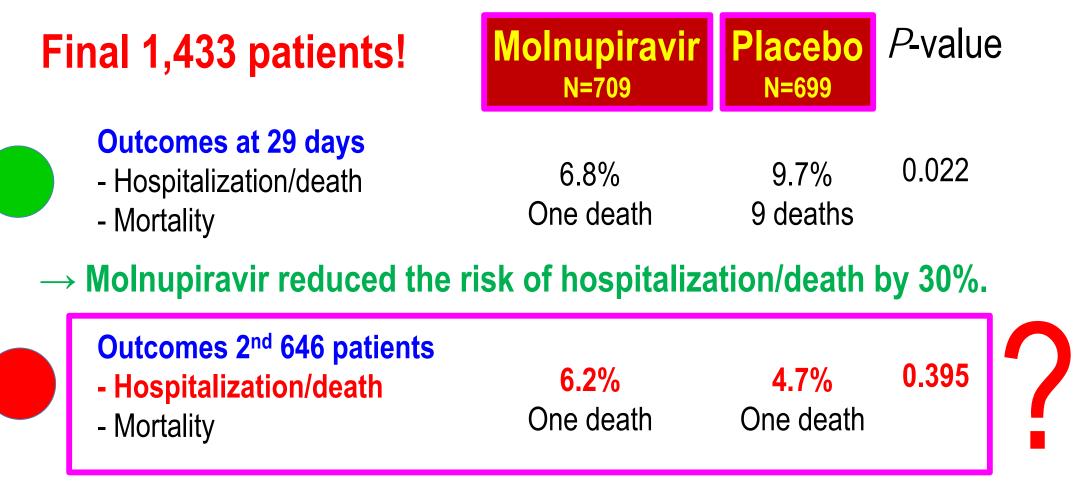
- Phase 3 (GS-US-540-9012) double-blind, randomized, placebo-controlled trial compared the efficacy and safety of 3 days of remdesivir (N=279) to standard of care (N=283) in non-hospitalized, high-risk participants with confirmed COVID-19
- 562 participants were randomly assigned 1:1 to receive intravenous (IV) RDV (200 mg on day 1, 100 mg on days 2 to 3) or placebo.
- The primary efficacy endpoint was composite COVID-19 hospitalization or all-cause death by day 28.
- Overall, 52% were male, 44% were Hispanic/Latino ethnicity and 30% were ≥ 60 years old. The most common comorbidities were diabetes mellitus (62%), obesity (56%; median BMI, 30.7) and hypertension (48%).


 Remdesivir ↓ viral production by 2, leading to a median reduction of 0.7 days in the time to viral 		Remdesivir N=279	Placebo N=283	<i>P</i> -value
clearance compared to SoC*.	th	0.7%	5.3%	0.008
 Larger efficacy in patients with 	h	1.6%	8.3%	0.002
high levels of VL at baseline.		3.6%	7.1%	-

No deaths occurred in either arm by day 28. Biomarkers associated with inflammation and coagulation, including LDH and procalcitonin, were prognostic for COVID-19 related hospitalization or all-cause death. RDV improved by day 3 of treatment, peripheral lymphopenia, monocyte count, and decreased neutrophil-to-lymphocyte ratio compared to placebo.

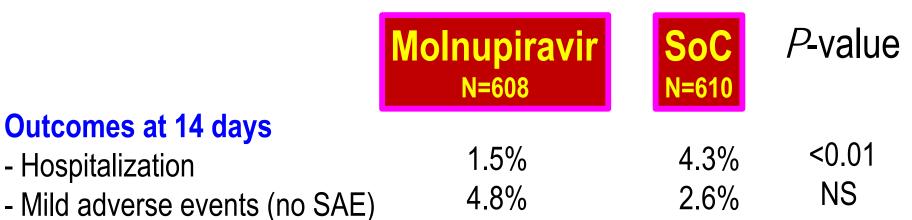
 \rightarrow Remdesivir reduced hospital admission/death by 87%.

Gottlieb RL, et al. NEJM. Dec 22 2021; Pan DZ et al. CROI 2022; Poster H-01; Webb B et al. CROI 2022; Poster H-01; *Lingas G et al. CROI 2022; Poster-H01.


Molnupiravir: MOVe-OUT RCT in non-hospitalized patients

\rightarrow Molnupiravir reduced the risk of hospitalization/death by 50%.

Caraco Y et al. 31st ECCMID July 9-12 2021 P#4700; MSD Press release October 1st 2021; Bernal AJ et al, N Engl J Med. Dec 16, 2021; doi: 10.1056/NEJMoa2116044.


Molnupiravir: MOVe-OUT RCT in non-hospitalized patients

Bernal AJ et al, N Engl J Med. Dec 16, 2021; doi: 10.1056/NEJMoa2116044.

Molnupiravir RCT in non-hospitalized patients in India

- Phase III multicenter open label randomized controlled trial of oral molnupiravir plus standard of care (MOL/SOC) versus SOC alone in Indian adults with mild SARS-CoV2 infection.
- 1,018 patients with RT PCR-confirmed mild SARS CoV2 infection were randomized 1:1 to oral MOL 800 mg BID for 5 days plus SOC *vs.* SOC alone.
- The primary endpoint was rate of hospitalization up to day 14.

\rightarrow Molnupiravir reduced the risk of hospitalization by 65%.

- In the MOL/SOC arm 80.8%, 95.6% and 97.4% had clinical improvement by Day 5, 10 and 14, respectively, compared to 32.1%, 74.3% and 94.1% in the SOC arm (p<0.0001 at day 5 and 10, and <0.01 at day 14).
- The rate of SARS CoV2 negativity was 77.1%, 91.3% and 93.9% in MOL/SOC vs. 29.3%, 70.2% and 89.0% in SOC at day 5, 10 and 14, respectively (p<0.001).

Kumarasamy N. et al. CROI 2022; Oral-09.

Oral Nirmatrelvir/rtv in non-hospitalized patients

- EPIC-HR (<u>E</u>valuation of <u>P</u>rotease <u>I</u>nhibition for <u>C</u>OVID-19 in <u>H</u>igh-<u>R</u>isk Patients) is a multinational randomized, double-blind study of <u>non-hospitalized adult patients</u> with COVID-19, who are at high risk of progressing to severe illness.
- 2,246 eligible participants with at least one underlying medical condition and a mild/moderate confirmed diagnosis of SARS-CoV-2 infection (within 5 days) were randomized (1:1) to receive nirmatrelvir/ritonavir or placebo orally every 12 hours for 5 days.
- The primary efficacy endpoint was composite COVID-19 hospitalization or all-cause death by day 28.
- The study was stopped after the first interim analysis with 1,219 adults enrolled by September 29, 2021 was performed.

At	28 days	Nirmatrelvir N=1,039	Placebo N=1,046	<i>P</i> -value
_	ospitalization/death	0.8%	6.3%	<0.001
- D	eath	No deaths	12 deaths	-
- D	/C due to TRAEs	2.1%	4.2%	-

→ Nirmatrelvir/ritonavir reduced hospital admission/death by 87%.

Hammond J, et al. N Engl J Med. Feb 16 2022. Online ahead of print.

Nirmatrelvir/ritonavir Drug-Drug Interactions (DDI)

P450 Cytocrom- CYP 3A4				
Substrates	Ind	ucers	Inhibitors	
Many drugs		amazepine	Imidazoles	
Nirmatrelvir		nycins	Cimetidine	
Calcium antagonists	Phenobarbital		Ca antagonists	
Antiarrhythmics		nytoin	Macrolides	
Opiates		coids	ISRS	
Antihistamines	NNR	TI	HIV-PI/ RTV /COB	
Benzodiazepines	_		HCV-PI	
Cisapride		Rifampin>Rifape	entine>Rifabutin	
Cyclosporine-		Imidazoles: Keto	>>Itra>Fluconazole	
Tacrolimus		Macrolides: Erythro>>Clarithro>>Azithromycin		
HIV NNRTI & PI				
		NNRTI: NVP > E	EFV/ETR > RPV	

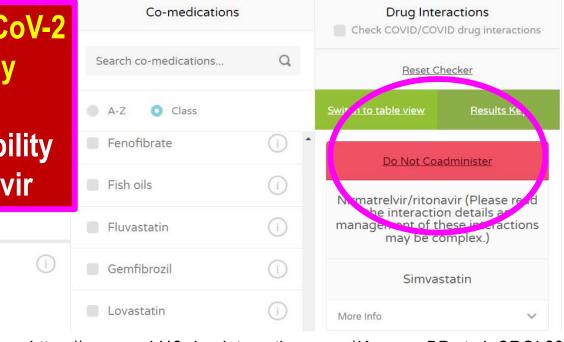
Nirmatrelvir/ritonavir Drug-Drug Interactions (DDI)

Covid19-druginter	actions.org/checker				
	About Us	Interaction Checkers	Prescribing Resources	Contact Us	
	Interactions	vith PAXLOVID (nirmatrelvir/ritonavi	r) and EVUSHELD (tixagevimab/cilgavima	ab) now available	

If a drug is not listed below it cannot automatically be assumed it is safe to coadminister.

- PBI-0451 inhibits SARS-CoV-2 replication at nM levels by inhibiting 3CL protease*
- Very good oral bioavailability
- PK not affected by ritonavir

complex.)


compley)

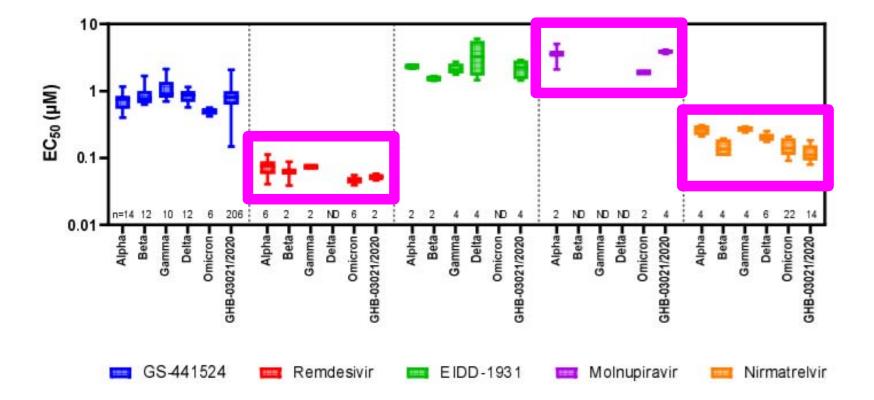
Nirmatrelvir/ritonavir

interaction details as management of these

interactions may be

(Please read the

https://www.covid19-druginteractions.org; *Kearney BP et al. CROI 2022; Poster-H02.

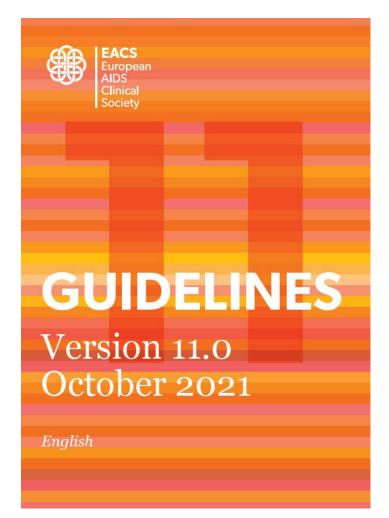

Reduction of <u>Hospital Admission</u> (and death) according to the treatment used in mild/moderate COVID-19 in high risk patients

Studies in non-vaccinated patients

Antivirals remain active against Omicron!

Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium

https://twitter.com/neyts_johan/status/1470887399341412361 Dec 16 2021; https://www.nytimes.com/article/omicron-coronavirus-variant.html Dec 16 2021; Vangeel L et al. bioRxiv preprint January 15, 2022 doi: https://doi.org/10.1101/2021.12.27.474275


Camostat* RCT in COVID-19 patients

Trial		Camostat N=194	Placebo N=99	<i>P</i> -value
	Outcomes at 28 days - Hospitalization/death - Adverse events	5.3% 9.0%	6.1% 13.0%	0.78 NS
Trial	#2 - ACTIV-2/A5401	Camostat N=108	Placebo N=107	
	Outcomes - Symptom improvement, days - Adverse events (grade ≥3)	9 (5,20) 7.4%	9 (5,20) 6.5%	NS NS

Jilg N et al. CROI 2022; Poster-H01; Jilg N et al. CROI 2022; Oral-09.

*Camostat 200 mg orally every 6 hours for 7-14 days or the pooled placebo group

Therapy of COVID-19 in PLWH = General population

- Do not stop or change ART!!!
- No proven activity of ARVs !!!
- Check DDIs (steroids and rilpivirine, doravirine or PIs and ritonavir and comedications and ARTs)
- Differential diagnoses (TB, PCP, Flu) and co-infections
- Seek advice of an HIV specialist
- Follow national and international guidelines of COVID-19 treatment

Disease stages

Treatment

Early antiviral therapy
Proper timing
anti-inflammatory drugs
Prophylactic heparin

Community	Hospital - Ward	Hospital - ICU
Asymptomatic/Mild Stages 1-2	Moderate/Severe Stages 3-5	Critical (MV, ECMO) Stages 6-7
Isolation, at least 10-14 days		
Symptomatic treatment. Close monitoring for early detection of progression. In seronegative older or high risk persons consider*: - Parenteral mAbs (OPAT) - Molnupiravir, oral 5-d - Nirmatrelvir/rtv, oral 5-d	Remdesivir, IV, 5 d Stages 4 (no oxygen) & 5 (low- Stage 6 plus Baricitinib, oral, Parenteral mAbs, s Only in seronegative persons	flow oxygen supply) 14 days
- Remdesivir (OPAT), IV 3-d	Dexamethasone, I Stages 5-7, low/high-flow oxyg Tocilizumab, single	en supply, MV and ECMO e IV dose
patients.	Low molecular wei During the entire hospitalizatio	

Dr. JM Miro, personal opinion. March 202 * No experience in vaccinated patients

CROIN Update on Epidemiology, Outcomes and Antivirals against COVID-19 in PLHIV

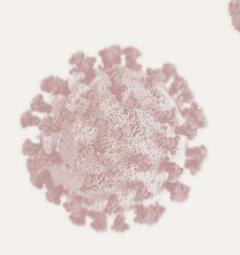
- Epidemiology
- Outcomes in PLHIV
- Tenofovir or not tenofovir, that's the question
- Antivirals, no data in PLHIV
- Take home messages

19ª edición

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

Take-home messages

The COVID-19 pandemic has negatively impacted the care of PLHIV. The rapid implementation of telemedicine has improved this care.


A significant proportion of SARS-COV-2 infections in PLHIV are asymptomatic. The prognosis of hospitalized PLHIV with COVID-19 is similar to the general population.

The protective effect of tenofovir on SARS-CoV-2 infection and the severity of COVID-19 is controversial. We must wait for RCT to see if it has any role.

PLHIVs have not been included in RCT of new antivirals against SARS-CoV-2. HIV specialists are at an advantage in managing ritonavir DDIs.

The antiviral treatment of COVID-19 in PLHIV should be the same as that of the general population and ART regimens should not be changed.

19^a edición

POSTCRO

Una actualización de la "29th Conference on Retroviruses and Opportunistic Infections"

3 de marzo del 2022 La Pedrera-Casa Milà, Barcelona con retransmisión en directo

GRÀCIES

Dr. José M^a Miró

Servicio de Enfermedades Infecciosas Hospital Clínic – IDIBAPS Universidad de Barcelona Barcelona E-mail: jmmiro@ub.edu