

POSTCR012021

Una actualización de la 28ª Conference on Retroviruses and Opportunistic Infections

Investigación básica:

Curación del VIH y anticuerpos neutralizantes

Javier Martinez-Picado, PhD

PROGRAM COMMITTEE WORKSHOP FOR NEW INVESTIGATORS AND TRAINEES

ADVANCES IN MOLECULAR VIROLOGY OF HIV AND SARS-CoV-2

Frank Kirchhoff, Ulm University Medical Center, Ulm, Germany

ADVANCES IN HIV AND SARS-CoV-2 IMMUNOLOGY

Galit Alter, *Ragon Institute of MGH*, *MIT and Harvard*, *Cambridge*, *MA*, *USA*

ADVANCES IN HIV CURE

Katherine J. Bar, University of Pennsylvania, Philadelphia, PA, USA

Changes in the CROI logo over the years

HIV Replication Cycle

POSTCROI 2021

Post-fusion HIV capsids traffick on microtubules to the nuclear pore

Correlative Electron Tomography of cytoplasmic HIV complexes

80% of complexes at the NPC associated with microtubules

POSTCROI 2021 Cone-shaped HIV-1 capsids are transported through intact nuclear pores

How does the capsid get through the nuclear pore? ٠

von Appen et al., Nature 2015

- ϕ of the nuclear pore is larger than previously determined
- The intact capsid can pass through the nuclear pore ۲

Uncoating occurs by breakage of the capsid lattice in the nucleus

- CPSF6 releases the cores from the nuclear pore and cluster on nuclear capsids.
- +sDNA synthesis of the viral cDNA is completed
- Physical disruption of the capsid releases the completed cDNA into the nucleoplasm
- It becomes integrated into the host cell genome in the vicinity of the uncoating site

Why HIV uses intact capsids to traffic to the nucleus?

- Reaction container for reverse transcription: initiated in the cytosol
- Trafficking module in the cytosol: along the cytoskeleton of the cell
- Shield from cytolytic DNA sensors: *restriction factors*!
- Nuclear import vehicle: shape matters ...
- Nuclear breakage of the capsid releases the genome complex for integration

Lenacapavir (GS-6207): First-in-class Inhibitor of the HIV Capsid

- pM, Long-active, Long-acting, All HIV subtypes, No Cross Resistance
- Interferes with the assembly, disassembly and traffic of capsid core
- Binds at a conserved interface between capsid monomers <u>stabilizing</u> the core

The thousand faces of the Elite Controller

+

Integration Site Analysis in the Host Chromosome

Non-Genic DNA

Matched Integration Site and Proviral Sequencing Assay

Clonally-expanded intact proviral genomes in Elite Controllers accumualte in Centromeric regions and KRAB-ZNF genes

Intact proviral genomes in EC in: non-genic, satellite or heterochromatin regions

Satellite DNA

KRAB-ZNF on Chr19 (Heterochromatin)

Yu #57; Jiang. 2020. Nature

POSTCROI 2021

Chromosomal Location Matters

"Autologous Shock and Kill" Immune Selection

Do intact viruses in "deep latency" undergo immune selection during ART ?

HIV Cure Research Priorities

Overlapping, mutually

dependent priorities to

elucidate and overcome

barriers to HIV cure

HIV Reservoir Atlas in Peripheral Blood

POSTCROI 2021

The most infected subpopulations had a memory phenotype

Non-invasive plasma glycomic and metabolomic biomarkers of post-treatment HIV control Improve the safety of analytic treatment interruption

Plasma metabolites associate with time-to-viral-rebound in the Philadelphia Cohort

Pre-ATI Plasma Metabolite							Р	FDR
Pyruvic acid							0.002	0.062
I -lactic acid							0.008	0.002
Taurine				_ + `			0.005	0.075
Glycerol 3-phosphate				`			0.003	0.062
Indole-3-lactic acid							0.010	0.002
Imidazolelactic acid				•			0.002	0.055
Glycerophospho-N-palmitovl ethanol	mine						0.008	0.002
Indole-3-pyruvic acid							0.018	0.093
2-Ovindole							0.001	0.152
3-Indoxyl sulphate							0.001	0.002
Nicotinamide							0.000	0.097
Trimethylamine N-oxide							0.006	0.002
Glycocholic acid							0.003	0.070
			1				0.000	0.002
Glycoursodooxycholic acid							0.002	0.002
							0.001	0.106
Ethylmolonic soid							0.000	0.190
N Asstylalutemic sold							0.014	0.132
N-Acelyigiutamic acid							0.020	0.158
1 5 Applydro D gluoitol			1				0.029	0.173
I,5-Annyaro-D-giucitoi			1				0.037	0.190
Nojic acid							0.003	0.062
D-Ribono-1,4-lactone							0.010	0.132
Gamma-Aminobutyric acid							0.005	0.074
a-ketogiutaric acid							0.007	0.089
L-glutamic acid				_/ /_	_/ /_	-	0.004	0.072
	0.01	01	1	10	100	1000		
		••		10	100			
•	Hazard Katio							
Lo	onger Time to	Rebound	Short	er Time	e to Re	boun	d	

Plasma metabolites associate with time-to-viral-rebound in the Philadelphia Cohort

A multivariable logistic model selected variables predicts probability of viral remission post ATI

IFN-I-associated gene expression predicts time to viral rebound after ART interruption

Zacharopoulou #158

HIV-1 bNAbs: Looking ahead

- Proof-of-concept for Ab-mediated PREVENTION
- Emergence evidence that bNAbs can maintain viral suppression as THERAPY
- Early promising data with LONG-TERM CONTROL, through delivery systems

HIV *

- Safety in humans
- Promising results in NHP
- Challenges:
 - pre-existing resistance
 - emergence of anti-drug Abs
 - o cost
- Future:
 - o new molecules
 - o combinations
 - o multiple studies for the next 2 yrs

SARS-CoV2

Safety: Diverse populations Efficacy: Prevention & Therapy Implementation: Fast development Possibility of fast deployment

- First-in-human RCT with bNAbs for HIV-1 (n=8, 3 IM doses, 2-3 yrs follow-up)
- No reactogenic production of difficult to induce functional neutralizing Abs
- Induction of anti-drug Abs

Remember!

- How HIV-1 capsid navigates to the cell nucleus
 - A new way to understand the HIV replication cycle?
- Chromosomal location of HIV-1 matters ...
 - In elite controllers and some people in long-term ART
- Simultaneous comparison of CD4 T cell in peripheral blood
 - Memory CD4 T cells form the most abundant reservoir
- Predicting viral rebound through
 - Plasma metabolites
 - o IFN-I-signatures
- bNAb: their role in treatment, prevention and cure strategies
 - Durable HIV Ab production in humans after AAV8-mediated gene transfer
 - SARS-CoV-2: a win-win situation in bNAb development

¡MUCHAS GRACIAS!

Javier Martinez-Picado

jmpicado@irsicaixa.es