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Why are single-cell technologies necessary to 
understand HIV infection and persistence?

• HIV infected cells are rare within a mixed population of cells (<0.1% HIV RNA+ cells)

→ Signatures from infected cells may be masked by uninfected cells
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“Needle in the needle stack” quote from Katie Bar

• CD4+ T cells are highly heterogeneous in nature
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Why single-cell multiomics might be helpful?

• It resolves the heterogeneity of cells

• It identifies the rare cells of interest

• It provides genomic, transcriptomic and proteomic wide discovery of potential 
mechanisms or therapeutic targets that can be validated

Aldrige and Techmann Nature Comm 2020
Palla et al. Nature Biotech 2022
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Current single-cell high throughput strategies to study HIV
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Current knowledge of single-cell multiomics to study HIV
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Single-cell multiomics reveals persistence of HIV-
1 in expanded cytotoxic T cell clones
Collora et al., Immunity 2022

Distinct gene expression by expanded clones of 
quiescent memory CD4+ T cells harboring intact 
latent HIV-1 proviruses
Weymar et al., Cell Reports 2022

Publications:

Using HIV RNA as a surrogate, ECCITE-seq 
identified enrichment of HIV-infected cells in 
clonally expanded cytotoxic CD4+ T cells and, 
enrichment of latent cells carrying intact HIV-1 
proviruses in clonally expanded quiescent 
memory CD4+ T cells
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Current knowledge of single-cell multiomics to study HIV
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Profound phenotypic and epigenetic 
heterogeneity of HIV-1-infected CD4+ 
T cell reservoir
Wu et al., Nature Immunology 2022

Publication:

Using ATAC-seq to identify HIV DNA, ASAP-seq 
captured transcription factor activity and 
surface protein expression of HIV DNA+ cells 
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Current knowledge of single-cell multiomics to study HIV
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Phenotypic signatures of immune 
selection in HIV-1 reservoir cells
Sun et al., Nature Medicine 2023

Publication:

Using targeted HIV DNA amplification, PheP-
seq identified surface protein expression of 
intact versus defective HIV-infected cells
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Current knowledge of single-cell multiomics to study HIV
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HIV silencing and cell survival signatures 
in infected T cell reservoirs
Clark et al., Nature 2023

Publication:

FINDseq (≈100 cell)

Using HIV DNA PCR-activated microfluidic 
sorting, FIND-seq captured the bulk 
transcriptome of HIV DNA cells
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Current knowledge of single-cell multiomics to study HIV
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Single-cell epigenetic, transcriptional, 
and protein states of HIV reservoir
Wei et al., Oral Abstract #142 CROI 2023

Publication:

Combining HIV mapping by ATAC-seq and HIV 
RNA mapping by RNA-seq, DOGMA-seq 
captured the epigenetic, transcriptional, and 
surface protein expression of latent and 
transcriptionally active HIV-infected cells

CITEseq

CyTOF

HIV-FLow

Protein



• HIV infection changes host epigenetic, transcriptomic and proteomic cellular landscapes

Facts

• Previous studies compared independent cohorts of people with and without HIV

Challenges
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• Expensive techniques that cannot be used to analyze a large number of samples

Inter-individual variability



Metabolomics, glycomics, cytokinesTCR repertoire

Genome-wide methylation

10X Genomics Single-cell Multiome
(ATAQ-seq + Gene Expression)

Longitudinal follow-up of HIV-infection and ART
effects at single-cell level

HIV-scAR
project

11

Checkear & 
CHAVI 

cohorts

Created with BioRender.com
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Longitudinal follow-up of HIV-infection and ART
effects at single-cell level

HIV-scAR
project

12

Checkear & 
CHAVI 

cohorts

Created with BioRender.com
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Clinical data at time to diagnose

Participant ID Age at sample 
(years)

Estimated time to seroconversion 
(days)

Log10VL at sample 
(copies/ml)

CD4 at sample 
(cells/µl)

1 43 43 5.3 244

2 31 43 5.5 556

3 58 1 6.4 422

4 33 22 5.1 403

5 36 132 5.2 1207



Simultaneous detection of cellular epigenetic regulators, 
cellular transcriptome and HIV DNA/RNA

10X Genomics Single-cell Multiome
(ATAQ-seq + Gene Expression)
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Combining HIV DNA mapping by ATAC-seq 
and HIV RNA mapping by RNA-seq, this 
technique might capture the epigenetic 
and transcriptional changes of latent and 
transcriptionally active HIV-infected cells
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Analysis of cellular epigenetic regulators, cellular 
transcriptome and HIV DNA/RNA

Alignment
CellRanger-ARC

(Human genome|hg38)

Quality Control
Seurat

(GEX/ATAC filtering,
doublet removal,

empty gems,
% mitochondrial RNA,

features, 
UMI counts, etc.)

Downstream Analysis
Seurat
Signac

(Normalization/scaling,
dimensional reduction,

clustering,
cluster annotation,

DE/DA changes, etc.)

GEX/ATAC Analysis

k-mer based matching
Kraken2

(Los Alamos|
1306 HIV subtype B sequences)

HIV+ cell detection

Alignment
CellRanger-ARC

(Hybrid reference: Human genome|hg38 +
Los Alamos|1306 HIV subtype B sequences)

&

Seurat Object/UMAP
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Simultaneous detection of HIV DNA+ and HIV RNA+ cells

⚫ Use of Kraken2 instead of classical 
alignment based methods

− High sequence variability of HIV 
genome 

− Reference: 1306 HIV subtype B 
European sequences (Los Alamos)

− This tool allows to quickly identify 
HIV+ cells, rather than recovering the 
mapping location within the HIV 
genome

− How it works?

Ref. m
Hash table 
k-mer/HIV pairs

k-mers

Query read

k-mers

+ HIV
Assignment to the HIV

https://github.com/DerrickWood/kraken2
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Identification of specific cell-type signatures

15 samples
≈10,000 cells/sample

150,060 single cells
• 52,504 pre-HIV
• 47,868 post-HIV
• 49,688 post-ART

Cell annotation based on:
- Azimuth reference (levels 1 and 2)
- VNPs reference (Ángel Bayón)
- Differentially expressed genes between clusters
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Identification of cell changes in PBMC 
after HIV infection and ART

Pre-HIV Post-HIV Post-ART

15 samples
≈10,000 cells/sample
150,060 single cells
• 52,504 pre-HIV
• 47,868 post-HIV
• 49,688 post-ART



log2FC

Post-HIV vs Pre-HIV
log2FC

Post-ART vs Pre-HIV
log2FC

Post-ART vs Post-HIV
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Identification of cell changes in PBMC 
after HIV infection and ART

*

*

*

*

*

Cell abundance changes 
reverse after a year of 
suppressive ART

Logistic regression, FDR correction
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Identification of epigenetic and transcriptomic changes 
after HIV infection and ART

HIV infection causes 
epigenetic and 
transcriptomic changes, 
which do not reverse 
after a year of 
suppressive ART

Logistic regression, FDR correction (ATACseq padj>0.1, log2FC<0.25; RNAseq padj<0.05, log2FC<0.25)

ATACseq – DNA accessibility RNAseq – Cellular transcriptome
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Identification of HIV DNA+ and RNA+ cells

k-mer based matching
Kraken2

(Los Alamos|1306 HIV subtype B sequences)

Alignment-based
CellRanger-ARC

(Hybrid reference: Human genome|hg38 +
Los Alamos|1306 HIV subtype B sequences)
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Identification of HIV DNA+ and RNA+ cells

Total HIV+ cells                                                              24                                             3

27 HIV+ cells

HIV DNA+ 
HIV RNA+DNA+

HIV RNA+

Pre-HIV Post-HIV Post-ART

HIV RNA+

11 HIV+ cells

Pre-HIV Post-HIV Post-ART

Expected HIV+ cells (Bulk Total HIV DNA)                41                                                  5

Kraken2 tool is reliable and detects more HIV+ 
cells than a classical alignment-based method
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Identification of HIV DNA+ and RNA+ cells

HIV DNA+
8

HIV RNA+
12

HIV RNA+
4

Kraken2
RNAseq

Kraken2
ATACseq

Cell Ranger-ARC
RNAseq

HIV RNA+DNA+
1

HIV RNA+
6
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Heterogeneous detection of HIV DNA+ and RNA+ cells 

27 HIV+ cells

8 HIV DNA+

1 HIV RNA+DNA+

18 HIV RNA+

All HIV DNA+ (including one HIV DNA+RNA+) cells were CD4 T cells

CD8 and B HIV RNA+ cells were only detected in viremia (post-HIV)

Monocyte HIV RNA+ cell was detected post-ART
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Conclusions

• 10X single-cell multiome identifies cell changes in PBMC after HIV infection and ART 
administration
• Increase of activated and γδ CD8 T cells after infection
• Decrease of these activated and γδ CD8 T, and an increase of naïve B cells after 1 

year under suppressive ART

• 10X single-cell multiome identifies transcriptomic and epigenetic changes after HIV 
infection and ART administration
• Transcriptomic and epigenetic changes are not completely reversed after 1 year 

under suppressive ART

• Kraken2 tool is reliable and detects more HIV+ cells than the alignment-based method 
CellRanger-ARC
• Heterogeneous detection of HIV DNA+ and HIV RNA+ cells 
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Future directions

• Comparison of epigenetic and transcriptomic signatures between 
HIV- and HIV+ CD4 T cells

• Finding potential mechanistic understanding and/or 
therapeutic interventions associated with HIV 
infection

• Epigenetic regulators and motifs linked to 
differentially expressed genes
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Identification of epigenetic changes 
after HIV infection and ART

Increased DNA accessibility Decreased DNA accessibilityATACseq – DNA accessibility

Epigenetic changes do not reverse after a year of suppressive ART
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Identification of transcriptomic changes 
after HIV infection and ART

Increased cellular transcription Decreased cellular transcriptionRNAseq – Cellular transcriptome

Transcriptomic changes do not reverse after a year of suppressive ART
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