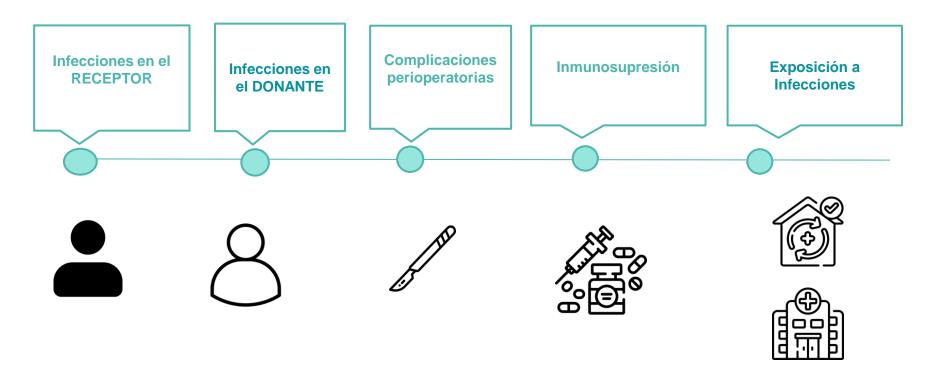
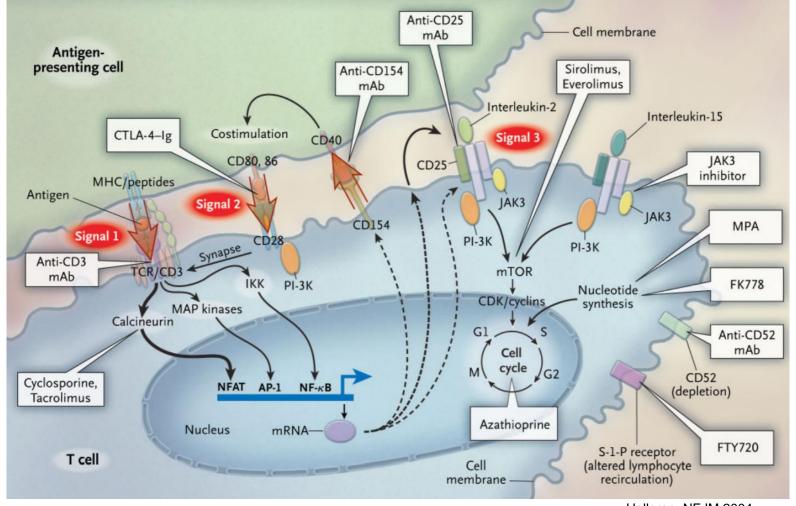
Infecciones en el paciente transplantado de órgano sólido

Alba Romero Caballero Médica adjunta de Enfermedades Infecciosas - HGTIP Unidad de Inmunosuprimidos Transplant ID Clinical Fellow – UHN Ajmera Transplant Center (Toronto)

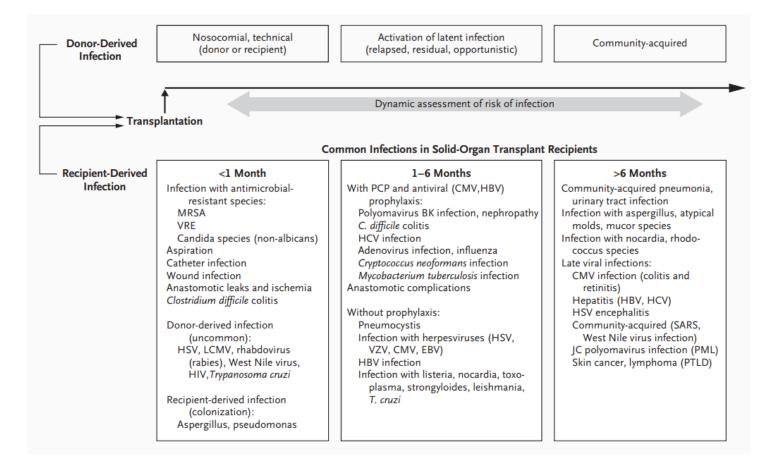

Jornada intrahospitaria de infecciones en el paciente inmunosuprimido

Indice


- 1. El estado "neto" de inmunosupresión
- 2. Cronología de la infección en el TOS
- 3. Screening D/R
- 4. Infecciones bacterianas
- 5. Infecciones víricas
- 6. Infecciones fúngicas
- 7. Infecciones Parasitarias

1. El estado "neto" de inmunosupresión

1. El estado "neto" de inmunosupresión


- Enfermedad de base, inmunodeficiencias previas
- Complicaciones técnicas asociadas al trasplante
- Barrera mucocutánea: catéteres, drenajes, sondas.
- Rechazo precoz, disfunción del injerto
- Numero de transplantes previos
- Complicaciones metabólicas: uremia/HD, diabetes, desnutrición, miopatía
- Citopenias: neutropenia, linfopenia, hipogammaglobulinemia
- Coinfecciones virales (CMV, VEB, BKV, etc)

1. El estado "neto" de inmunosupresión

Glucocorticoides	Inmunoglobulinas Anti-linfocíticas	Inh calcineurina	Inh síntesis nucleótidos	Inh mTOR	Tto rechazo
	Timoglobulina/ATG	Ciclosporina	Micofenolato	Sirolimus	Plasmaféresis Eculizumab
	Basiliximab	Tacrólimus	Azatioprina	Everolimus	Rituximab
Herida qx Bacterias Hongos	Virus Bacterias encapsuladas	Virus (herpes, gingivitis)	Bacterias Víricas (CMV tardío, VPH)	Herida qx Menor infección viral?	Bacterias Encapsuladas Virus (CMV) Hongos RTX - menor incidencia PTLD

2. Cronología de la infección en TOS

3. Screening donante/receptor

Infecciones transmitidas por el donante

 TABLE 1
 Potential donor-derived disease transmission as reported to the OPTN: 2005-2017

	Reports (Donors)	Recipients potentially involved ^a	Recipients with proven/ Probable transmission	Donor-de- rived disease attributable deaths (Recipients)	Liver recipients ^a with proven or Probable transmissions	Heart recipients ^a	Kidney/ Pancreas ^a	Lung or heart/Lung recipients ^a
Malignancy	577	1342	164	43	17	1	26	3
Viruses ^b	463	1463	216	27	26	6	41	14
Bacteria ^c	467	1524	230	21	12	3	39	24
Fungi ^d	299	1043	179	26	10	5	18	15
Mycobacteria ^e	136	468	35	7	0	0	0	3
Parasites ^f	118	385	103	17	8	6	12	5
Other Disease	121	402	68	3	8	0	10	6
Total	1980	5688	908 (15.9%)	135 (14.9%)	81	21	146	70

3. Screening donante/receptor

Screening en donante

The NEW ENGLAND JOURNAL of MEDICINE

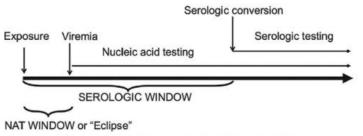
ORIGINAL ARTICLE

Transmission of Rabies Virus from an Organ Donor to Four Transplant Recipients The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transmission of West Nile Virus from an Organ Donor to Four Transplant Recipients

Morbidity and Mortality Weekly Report


Transmission of *Strongyloides stercoralis* Through Transplantation of Solid Organs — Pennsylvania, 2012

Strongyloides stercoralis is an intestinal nematode endemic in the tropics and subtropics. Immunocompetent hosts typically are asymptomatic, despite chronic Strongyloides infection. In contrast, immunocompromised patients are at risk for hyperinfection syndrome and disseminated disease, with a fatality rate >50% (1–3). The infection source for immunocompromised rial segment from a common or-

from his mother indicated that the donor was a healthy young male who often visited Puerto Rico. *Strongyloides* infection risk was not considered; therefore, testing was not performed before organ recovery.

Kidney and pancreas recipient. This recipient is a U.S.born white man, aged 64 years, with end-stage renal disease

Test	Candidate	Deceased donor	Living donor
Viral			
HIV			
Human immunodeficiency virus (HIV) antibody/antigen (fourth Generation HIV screening test)	×	х	×
HIV nucleic acid amplification testing (NAT)		x ^b	xp
Cytomegalovirus (CMV) IgG antibody	×	×	×
Hepatitis B virus (HBV)			
HBV surface antigen (HBsAg)	×	×	×
HBV core antibody (HBcAb-IgM and IgG, or total core antibody)	×	×	×
HBV surface antibody (HBsAb)	×		
HBV NAT		xb	xp
Hepatitis C virus (HCV)			
HCV antibody	х	×	×
HCV NAT	xc	×	×
Epstein-Barr virus (EBV) antibody (EBV VCA IgG, IgM)	х	х	х
West Nile virus serology or NAT (seasonal)			×
Parasitic			
Taxoplasma IgG antibody	×	×	×
Strongyloides IgG (if from endemic areas)	×	×	×
Trypanosma cruzi serology (if from endemic areas)	x	х	х
Fungal			
Coccidiodes serology (if from endemic areas)	×	×	×
Bacterial			
Syphilis (any of the following)	×	×	×
Fluorescent treponema antibody absorption (FTA-ABS)			
T. pallidum particle agglutination (TPPA)			
T. pallidum enzyme immunoassay (TP-EIA)			
Rapid plasma reagin (RPR)			
Venereal Disease Research Laboratory (VDRL)			
Tuberculosis (any of the following)	×		×
Purified protein derivative (PPD)			
Interferon gamma release assay (IGRA)			

Virus	Serology	NAT	
HIV	22 days	5-10 days	
HBV	38 - 50 days	20 - 26 days	
HCV	38 - 94 days	6 - 9 days	

FIGURE 1 Schematic of viral infection and detection by serology and nucleic acid testing

Infecciones de la herida quirúrgica

- Alta morbilidad y mortalidad
- Incidencia 3-53%
- Alta incidencia en intestinal, multivisceral, hígado, páncreas.
- Ingreso prolongado, reingreso,
- Riesgo de MDR
- El órgano en sí puede ser un foco de infección

Organ transplant type	Incidence of SSIs (%)	Predominant pathogens causing SSIs	Secondary pathogens causing SSIs
Renal	3-11	Staphylococcu aureus	Gram-negative organisms (Enterobacteriaceae, Pseudomonas)
		CoNS	Yeast
		Enterococci	
Pancreas and pancreas-kidney	9-45	Staphylococcu aureus	Gram-negative organisms (Enterobacteriaceae, Pseudomonas)
		CoNS	Streptococci
		Enterococci	Candida spp Mycoplasma hominis

TABLE 2 Risk factors for SSI by organ transplant type

Organ transplant type	Risk factor categories					
	Host factors	Surgical factors	Donor/allograft factors	Immunosuppression		
Renal	DM	Ureteral leak	DGF	Azathioprine		
	Obesity	Hematoma	Contamination of kidney perfusate	ATG		
	Chronic GN	Blood transfusion	Acute graft rejection	MMF		
	Re-operation			Sirolimus		
Pancreas,	Re-operation	Prolonged operative time	Donor > 55 y old			
pancreas-kidney		Prolonged ischemic time	ATN in transplanted kidney			
		Enteric drainage	Graft rejection			
		Post-transplant fistula				
		Hand sewn anastomosis				
		Blood transfusion				

ITU en el paciente trasplantado renal

Risk Factors for Urinary Tract Infections During the First Year After Kidney Transplantation

```
R. Sorto a, S.S. Irizar a, G. Delgadillo a, J. Alberú b, R. Correa-Rotter a, L.E. Morales-Buenrostro a 2
```

35 - 68%

E. Coli

Principales FR:

- Mujeres
- Días de sondaje
- ITU en el mes previo al trasplante
- Alteraciones genitourinarias
- 14 días de tratamiento

Bacteriuria asintomática

Cochrane Database of Systematic Reviews Review - Intervention

Antibiotics for asymptomatic bacteriuria in kidney transplant recipients

■ Julien Coussement, Anne Scemla, Daniel Abramowicz, Evi V Nagler, Angela C Webster Authors' declarations of interest Version published: 01 February 2018 Version history https://doi.org/10.1002/14651858.CD011357.pub2 ♂

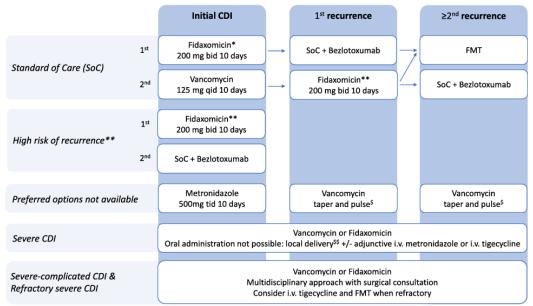
Tuberculosis latente y activa

- Riesgo de TB activa en SOT x20-75
- Pulmón ++.
- Incidencia TR
 - 0.5-6% en países desarrollados,
 - 15% en países endémicos
- Primeros 6 meses postrasplante
- PPD + IGRA

TABLE 2 Efficacy of short-term treatment with isoniazid and rifampicin for latent tuberculosis infection in lung transplant candidates

	No LTBI	Untreated LTBI	LTBI treated with 6H	LTBI treated with 3HR
Patients, No.	277	62	8	22
Median follow-up, days (range)	572 (1-6636)	741 (1-6138)	754 (1-2344)	175 (3-1560)
TB cases, No. cases (%)	3 (1%)	3 (4.8%)	0	0
TB incidence density, No. cases/10 ⁵ patients-year (confidence interval 95%)	270 (60-800)	1200 (250-3490)	0 (0-16770)	0 (0-14190)

Tuberculosis latente: pautas de tratamiento


	Drug	Dose	
INH	9 months	5mg/kg/d (300mg max)	85-93%
INH	6 months	5mg/kg/d (300mg max)	80%
INH/RMP	3-4 months	5mg/kg (300mg max) 10mg/kg (600mg max)	80-85%
RMP	4 months	10mg/kg (600mg max)	80-95%
Levo or moxifloxacin	9 months	500mg/d // 400mg/d	LT, Weak evidence

Indicaciones de tratamiento de la ITL

Tuberculin reactivity of ≥5mm before transplantationPositive interferon-gamma release assays (IGRAs) History of tuberculin reactivity/positive IGRA without adequate prophylaxis Recent conversion of tuberculin skin test or IGRA to positive Radiographic evidence of old TB without prior prophylaxis; a chest CT scan should be performed in these patients to look for disseminated disease and to serve as a baseline study History of inadequately treated active TB Close contact with an individual with active pulmonary TB Receipt of an allograft from a donor with latent TB or with a remote history of untreated or inadequately treated active TB

3. Infecciones perioperatorias en TOS

Clostridium difficile

^{*} Risk stratification for risk of recurrence may be applied for selective use of fidaxomicin in case of limited access or resources.

Factores de riesgo de recidiva

- Edad > 65a
- TOS
- Neoplasia hematológica
- Hospitalización < 3m
- Uso de PPI

Criterios de gravedad

- Megacolon/ileo
- Leucocitosis / leucopenia
- Insuficiencia renal
- Lactato sérico > 2.2

^{**} Consider extended fidaxomicin: 200 mg bid on day 1-5, 200 mg q48h on day 7-25. Most important risk factor for recurrence is age >65-70 years. Additional risk factor(s) to consider are healthcare-associated CDI, prior hospitalization s 3 months, prior CDI episode, continued non-CDI antibiotic use, and PPI therapy started during/after CDI diagnosis. The risk of recurrence is assumed higher with more risk factors present.

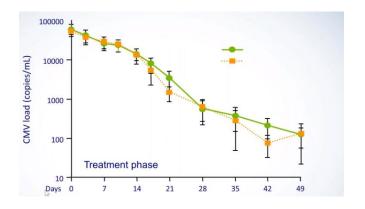
Vancomycin taper and pulse: 2 weeks 125 mg qid, followed by 1 week 125 mg bid, then 1 week 125 mg qd, then 1 week 125 mg q48h, and finally 125 mg q72h for 1 week.

^{\$5} Rectal or nasoduodenal delivery

4. Infecciones virales en TOS

CMV

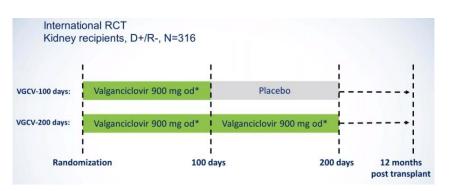
- Es la infección viral más prevalente en el paciente TOS.
- Virus inmunomodulador
- Presentación en
 - Alto riesgo: D+ / R-
 - Riesgo moderado D + o -/ R+*
 - Bajo Riesgo D-/R-

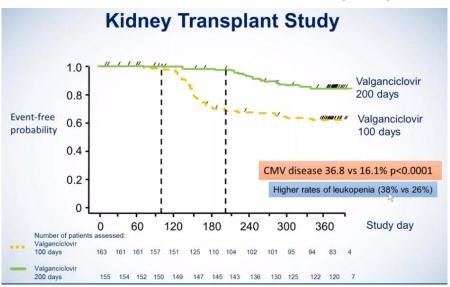

- Rechazo agudo
- Rechazo crónico
 - · Fibrosis tubulointersticial
 - Bronquiolitis obliterante
 - Coronariopatía
- Diabetes mellitus

- Infecciones
 - Fúngicas y bacterianas
 - VEB y PTLD
 - Recurrencia VHC
- Menor supervivencia de injerto y paciente

4. Infecciones virales en TOS

CMV


- Oral VGCV
- IV si presentación grave o problemas de absorción
- Monitorización semanal de la viremia y hemograma + función renal
- Tratar mínimo dos semanas o hasta su negativización.
- Monitoring
- ¿Profilaxis secundaria?

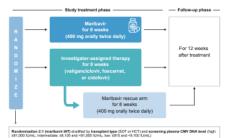

doi: 10.1111/j.1600-6143.2010.03074.x

The Efficacy and Safety of 200 Days Valganciclovir Cytomegalovirus Prophylaxis in High-Risk Kidney Transplant Recipients

A. Humar^{a, *}, Y. Lebranchu^b, F. Vincenti^e, E. A. Blumberg^d, J. D. Punch^e, A. P. Limaye^t, D. Abramowicz^g, A. G. Jardine^h, A. T. Voulgariⁱ, J. Iyesⁱ, I. A. Hauserⁱ and P. Peeters^k

Humar, A (2010)

Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results from a Phase 3 Randomized Clinical Trial


Robin K. Avery, Sophie Alain, Barbara D. Alexander, Emily A. Blumberg, Roy F. Chemaly, Catherine Cordonnier, Rafael F. Duarte, Diana F. Florescu, Nassim Kamar, Deepali Kumar, Johan Maertens, Francisco M. Marty, Genovefa A. Papanicolaou, Fernanda P. Silveira, Oliver Witzke, Jingvang Wu, Aimee K. Sundberg, and Martha Fournier, for the SOLSTICE Trial Investigators

INTRODUCTION

This was a phase 3, multicenter, randomized, open-label, active-controlled study to assess the efficacy and safety of maribavir compared with IAT in HCT and SOT recipients with CMV infections refractory to most recent treatment, with or without resistance to ganciclovir/valganciclovir, foscarnet, and/or cidofovir.

STUDY DESIGN

STUDY ENDPOINTS

The primary endpoint was confirmed CMV viremia clearance at the end of Week 8 (regardless of premature treatment discontinuation).

The key secondary endpoint was a composite of confirmed CMV viremia clearance and symptom control at the end of Week 8, maintained through Week 16 after receiving exclusively study-assigned treatment.

RESULTS

352 patients were randomized (maribavir, n=235; IAT, n=117)

PRIMARY ENDPOINT (WEEK 8)

Adjusted difference (95% CI): 32.8 (22.80-42.74)

A significantly higher proportion of patients treated with maribavir achieved the primary endpoint of confirmed CMV viremia clearance at Week 8 compared with IAT.

KEY SECONDARY ENDPOINT (WEEK 16)

Adjusted difference (95% CI): 9.5 (2.02-16.88)

A greater proportion of patients treated with maribavir achieved the composite key secondary endpoint of CMV viremia clearance and symptom control at Week 8, with maintenance through Week 16 compared with IAT.

SAFETY

Median (range) duration of exposure was 57 (2–64) days with maribavir and 34 (4–64) days with IAT.

Fewer patients discontinued maribavir than IAT due to TEAEs (13.2% vs 31.9%).

Dysgeusia was the most frequently reported TEAE in the maribavir group (maribavir: 37.2%; IAT: 3.4%).

Maribavir was associated with less acute kidney injury versus foscarnet (8.5% vs 21.3%) and neutropenia versus valganciclovir/ganciclovir (9.4% vs 33.9%).

One patient per treatment group had fatal treatment-related TEAEs.

CONCLUSIONS

Maribavir was superior to IAT for cytomegalovirus viremia clearance, and viremia clearance plus symptom control, with maintenance of these effects post-therapy in transplant recipients with refractory cytomegalovirus infections with or without resistance.

Maribavir demonstrated an improved safety profile versus valganciclovir/ganciclovir for myelotoxicity and versus foscarnet for nephrotoxicity, with fewer patients discontinuing maribavir than IAT.

The availability of an orally bioavailable therapy without the tolerability issues associated with current therapies may confer patient management benefits.

CMV, cytomegalovirus; HCT, hematopoietic-cell transplant; IAT, investigator-assigned therapy; SOT, solid-organ transplant; TEAE, treatment-emergent adverse event. ClinicalTrials.cov; NCT02931539

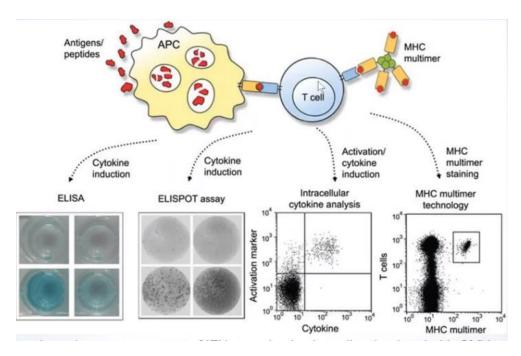
This study was funded by Takeda Development Center Americas, Inc., Lexington, MA

JAMA | Original Investigation

Letermovir vs Valganciclovir for Prophylaxis of Cytomegalovirus in High-Risk Kidney Transplant Recipients

A Randomized Clinical Trial

Ajit P. Limaye, MD; Klemens Budde, MD; Atul Humar, MD, MSc; Flavio Vincenti, MD; Dirk R. J. Kuypers, MD, PhD; Robert P. Carroll, BM, BCh, DM; Nicole Stauffer, BS; Yoshihiko Murata, MD, PhD; Julie M. Strizki, PhD; Valerie L. Teal, MS; Christopher L. Gilbert, BS; Barbara A. Haber, MD

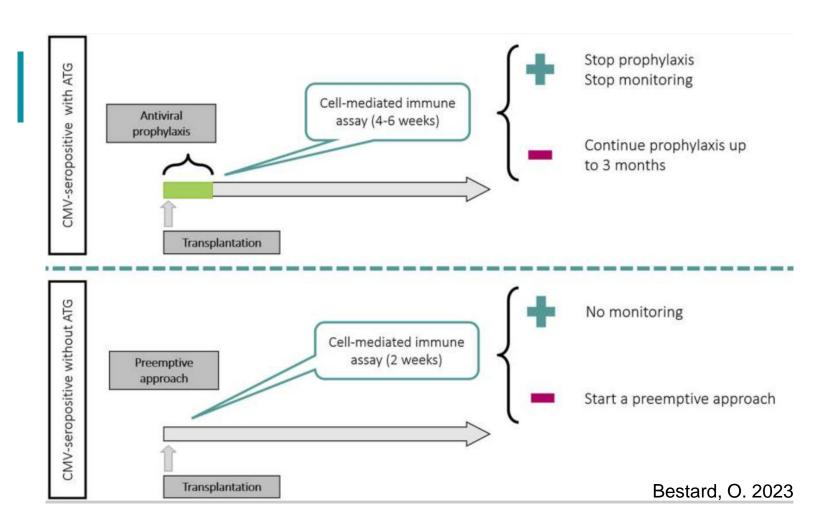

Figure 2. Primary Outcome of Cytomegalovirus (CMV) Disease With Letermovir vs Valganciclovir Prophylaxis Through Week 52 in the Full Analysis Set

No./total No. (%)		Difference	Favors	1 Favors	
Letermovir ^a	Valganciclovir	(95% CI), % ^b	letermovir	valganciclovir	
30/289 (10.4)	35/297 (11.8)	-1.4 (-6.5 to 3.8) (noninferior)	⊢ •	\vdash	
50/289 (17.3)	51/297 (17.2)	0.1 (-6.1 to 6.3)	\vdash	-	
25/210 (11.9)	24/209 (11.5)	0.5 (-5.8 to 6.8)	⊢	-	
5/79 (6.3)	11/88 (12.5)	-6.3 (-15.5 to 2.9)		H	
26/242 (10.7)	23/242 (9.5)	1.2 (-4.2 to 6.7)	⊢	- 	
4/47 (8.5)	12/55 (21.8)	-12.5 (-27.0 to 2.1)	-	H	
2/37 (5.4)	6/53 (11.3)	-5.7 (-18.1 to 6.7)	-	<u> </u>	
28/250 (11.2)	29/243 (11.9)	-0.7 (-6.4 to 5.0)	⊢-		
15/118 (12.7)	16/116 (13.8)	-1.3 (-10.0 to 7.5)	⊢	\vdash	
15/171 (8.8)	19/181 (10.5)	-1.7 (-8.0 to 4.6)		H	
nduction immunos	uppression				
18/131 (13.7)	17/138 (12.3)	1.4 (-6.7 to 9.6)	⊢	-	
12/158 (7.6)	18/159 (11.3)	-3.7 (-10.3 to 2.8)	├─	H	
		-	30 -20 -10 (Difference (959		
	Letermovir ³ 30/289 (10.4) 50/289 (17.3) 50/289 (17.3) 25/210 (11.9) 5/79 (6.3) 26/242 (10.7) 4/47 (8.5) 2/37 (5.4) 28/250 (11.2) 15/118 (12.7) 15/171 (8.8) induction immunos 18/131 (13.7)	Letermovir³ Valganciclovir 30/289 (10.4) 35/297 (11.8) 50/289 (17.3) 51/297 (17.2) 25/210 (11.9) 24/209 (11.5) 5/79 (6.3) 11/88 (12.5) 26/242 (10.7) 23/242 (9.5) 4/47 (8.5) 12/55 (21.8) 2/37 (5.4) 6/53 (11.3) 28/250 (11.2) 29/243 (11.9) 15/118 (12.7) 16/116 (13.8) 15/171 (8.8) 19/181 (10.5) nduction immunosuppression 18/131 (13.7) 17/138 (12.3)	Difference Dif	Difference	

	No. (%)		Difference (95% CI), % ^b	
Adverse event	Letermovir (n = 292)	Valganciclovir (n = 297)		
Adverse event summary				
≥1 adverse event	271 (92.8)	276 (92.9)	-0.1 (-4.4 to 4.2)	
Serious adverse events ^c	106 (36.3)	113 (38.0)	-1.7 (-9.5 to 6.1)	
Drug-related adverse events ^d	58 (19.9)	104 (35.0)	-15.2 (-22.2 to -8.0)	
Serious drug-related adverse events ^{c,d}	4 (1.4)	15 (5.1)	-3.7 (-7.0 to -0.9)	
Death	2 (0.7)	1 (0.3)	0.3 (-1.3 to 2.2)	
Discontinued due to adverse events	12 (4.1)	40 (13.5)	-9.4 (-14.1 to -4.9)	
Discontinued due to serious adverse events ^c	6 (2.1)	14 (4.7)	-2.7 (-5.9 to 0.3)	
Discontinued due to drug-related adverse events ^d	8 (2.7)	26 (8.8)	-6.0 (-10.1 to -2.4)	
Discontinued due to serious drug-related adverse events ^{c,d}	2 (0.7)	7 (2.4)	-1.7 (-4.2 to 0.4)	
Adverse events in ≥10% of participants				
Diarrhea	92 (31.5)	85 (28.6)	2.9 (-4.5 to 10.3)	
Tremor	53 (18.2)	52 (17.5)	0.6 (-5.6 to 6.9)	
Urinary tract infection	41 (14.0)	42 (14.1)	0.1 (-5.8 to 5.6)	
Peripheral edema	39 (13.4)	38 (12.8)	0.6 (-4.9 to 6.1)	
Hypomagnesemia	37 (12.7)	39 (13.1)	-0.5 (-5.9 to 5.0)	
Leukopenia	33 (11.3)	110 (37.0)	-25.7 (-32.3 to -19.1)	
Hypertension	33 (11.3)	36 (12.1)	-0.8 (-6.1 to 4.5)	
Increased creatinine	30 (10.3)	41 (13.8)	-3.5 (-8.9 to 1.8)	
Hypophosphatemia	30 (10.3)	35 (11.8)	-1.5 (-6.7 to 3.6)	
Hyperkalemia	27 (9.2)	32 (10.8)	-1.5 (-6.5 to 3.4)	
Nausea	25 (8.6)	33 (11.1)	-2.5 (-7.5 to 2.3)	
Fatigue	18 (6.2)	32 (10.8)	-4.6 (-9.3 to -0.1)	
Neutropenia	8 (2.7)	49 (16.5)	-13.8 (-18.7 to -9.3)	

Leukopenia 13% vs 37% Neutropenia 2% vs 16%

4. Infecciones virales en TOS



O. Manuel. CMI (2013)

4. Infecciones virales en TOS

Immune monitoring-guided vs fixed duration of antiviral prophylaxis against cytomegalovirus in solid-organ transplant recipients. A Multicenter, O. Manuel. CID (2023) Randomized Clinical Trial

- Open label RCT in adult kidney and liver Tx
- 193 randomized (D+/R- and R+ATG)
 - Control group: fixed duration valgancyclovir 3 or 6 months
 - Interventional group: Guided by CMI (monthly T track CMV). If positive, they stopped the prophylaxis.
- Primary endopoint: % of patients with clinically significant CMV infection
- Results:
 - Monitoring group 30.9% vs 31% in the control group.
 - Reduction of duration of antiviral prophylaxis (MD -26 days, p<0.001)

Casos clínicos

Infecciones en trasplante de órgano sólido

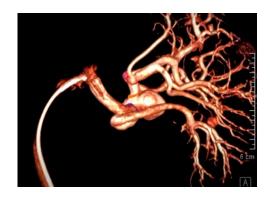

Jornada intrahospitaria de infecciones en el paciente inmunosuprimido

- 77 años
- Tx renal 25/08/2023 por nefropatía diabética
- Serology CMV +/+ VEB +/+
- Inducción: timoglobulina >> FK, MMF, PDN
- Profilaxis: septrim, VGCV, nistatina
- Excelente evolución renal, retirada catéteres
- Alta 01/08/2023 (Cr 1.3mg/dl)

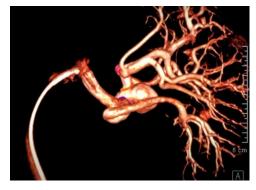
Reingreso el 14 días después por dolor abdominal y caída de Hb hasta 6.1g/dl y empeoramiento de función renal (Cr 2.8mg/dl)

- ¿Qué sospechamos?
 - Una dehiscencia de la sutura ureteral
 - Una apendicitis aguda
 - Un hematoma periinjerto con sangrado activo de la sutura arterial
 - Una malaria transmitida por el donante

- Angio- CT hematoma perirrenal que mide 10,5 x 7,1 cm con gran cantidad de extravasación de contraste en consonancia con sangrado activo de la arteria ilíaca externa.
- Evacuación qx urgente.
- Cultivos aspirado y urocultivo:S. epidermidis


- Cobertura con vancomicina + meropenem ev.
- Después de 48h, la Hb continúa cayendo hasta 6.5g/dl.
- Nuevo angio-TC:

There is a focal outpouching noted involving the proximal renal artery of the transplant kidney at the level of the anastomosis with the right external iliac artery (series 16, image 131), measuring up to 10 mm (series 18, image 105), not definitely seen on prior imaging.


Additional smaller outpouching more proximally measuring up to 7 mm (series 18, image 103) is stable from prior day imaging.

- Re-IQx urgente
- Transplantectomía y reparación vascular de aneurisma micótico de la arteria renal.

- ¿Qué microorganismo da más <u>típicamente</u> aneurismas postquirúgicos de la a. renal?
 - S. epidermidis (si salió en el primer cultivo!)
 - S. Aureus
 - Pseudomonas Aeruginosa
 - Candida Albicans


```
Misc Asp/Tis/Bx

Coagulase negative staphylococcus (not S. lugdunensis) 
Scant growth

Gram Stain:
1+ pus cells
No bacteria seen.
```

```
Misc Asp/Tis/Bx

Candida albicans !

Heavy growth

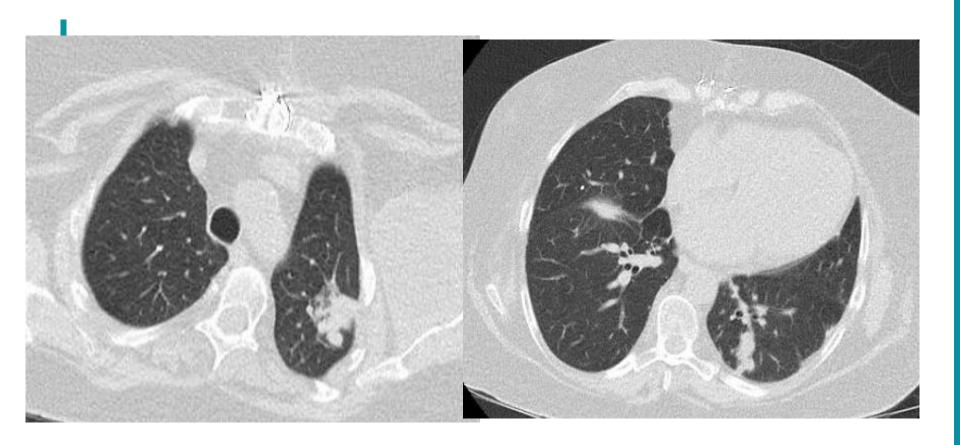
Gram Stain:

Few pus cells

Few yeast with pseudohyphae seen.
```

Aneurisma micótico de la a. renal

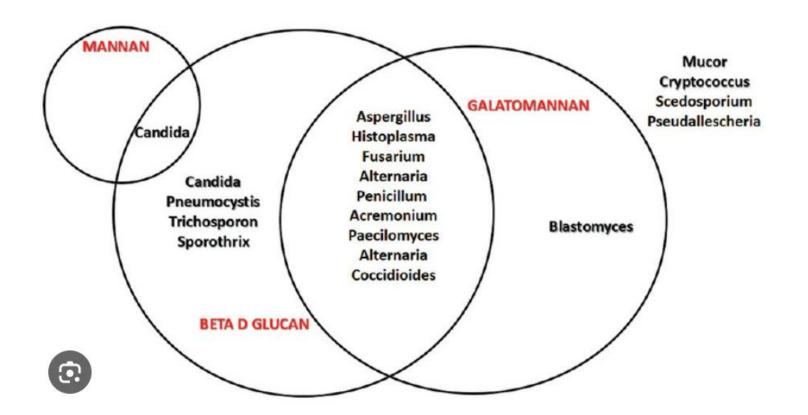
- Complicación rara (<1%) pero potencialmente mortal
- Después de 10 a 15 días después del Tx
- Puede ser anastomótica o intrarrenal. Causado por infecciones > errores técnicos
- Más frecuentes: S Aureus, Pseudomonas Aeruginosa, Candida
- La mayoría requiere nefrectomía por adherencias, rechazo, disminución de la función del injerto o infección persistente.
- Tratamiento:
 - Escisión del tejido infectado y la cirugía de reconstrucción arterial.
 - Procedimientos endovasculares: experiencias decepcionantes.
- Tratamiento: atb dirigido/terapia antifúngica durante 4-6 semanas

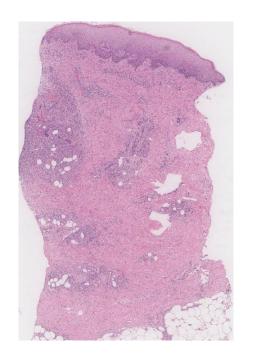


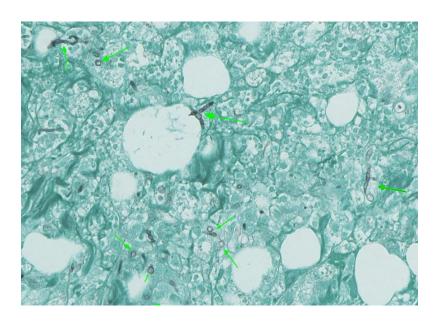
- Mujer de 52 años
- Tx renal en abril 2023 por NAE
- IS: ATG 3mg/kg \rightarrow MMF 540, Tacrolimus 5 mg, PDN 2.5
- Serologías CMV D+/R+
- Natural de Ontario, Canadá. Vive en una casa con dos gatos y un perro.
- Trabaja de dependienta en Winners.

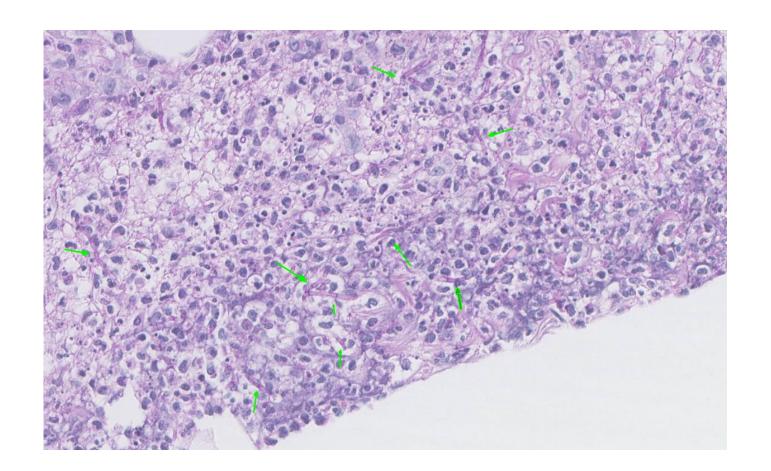
 Lesiones nodulares dolorosas desde hace 2 semanas en tobillo, y abdomen, junto a febrícula de 37.5°C

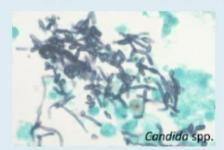
- ¿Qué más pruebas diagnósticas haríais?
 - Hemocultivos seriados incluyendo bacterias, micobacterias, hongos
 - BAL + Biopsia de lesión cutánea, examen directo + cultivo
 - Antígeno Galactomannano + BDG
 - TC craneal con contraste

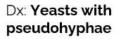

 El TC craneal descartó colecciones intracraneales, tampoco mostró signos de rinosinusitis.


- En suero: negativo (x3)
- En BAL: negativo
- Ag de cryptococo: negativo




- ¿Cuál sería vuestra primera opción diagnóstica?
 - Ectima gangrenoso por Pseudomonas Aeruginosa
 - Micobacteria no tuberculosa
 - Infección fúngica diseminada
 - No tengo ni idea de lo que puede ser... UMI, ayuda!


Tinción de BAL, biopsia: formas fúngicas – hifas septadas



MORPHOLOGY & DESCRIPTIONS OF FUNGAL INFECTIONS WITH HYPHAE OR PSEUDOHYPHAE IN TISSUES

Description: Small yeasts (3-5 microns in size) intermingled with pseudohyphae and hyphae

Consistent with *Candida*spp, however *Aspergillus*spp. and other hyaline
fungi can be confused
histologically

Dx: Non-pigmented (hyaline), septated hyphae

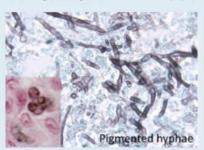
Description: acute angle branching

Consistent with

Aspergillus spp.,
Fusarium spp.,
Scedosporium spp.,
Trichoderma spp.,
Paecilomyces spp. and
others.
Mucorales genera can

sometimes have this

morphology


Mucorales genera

Dx: Non-pigmented (hyaline), pauciseptate hyphae

Description: pauciseptate ribbon-like hyphae with right angle branching

Consistent with **Mucorales genera**; owever Asperaillus s

however Aspergillus spp. and other septated hyaline hyphae can sometimes have this morphology

Dx: Pigmented yeasts and hyphae with septations

Description: pigmented irregular hyphae and yeast-like structures both with septations

Consistent with
dematiaceous fungi
including: Madurella spp,
Fonsecaea spp,
Cladophialophora spp,
Exophiala spp, Curvularia
spp, Bipolaris spp, and
others

 Diagnóstico: Scedosporidiasis diseminada

Tratamiento:

- Voriconazol 200mg q 12h
 - Niveles de tacrólimus 32-24ng/ml, náuseas, vómitos
- Isavuconazol 200mg cada 24h vo
- 3 meses

Scedosporidiasis diseminada

- También llamado Lomentospora
- S. apiosperpum, S. prolificans
- Aumento incidencia en pacientes IS junto a Fusarium (primera causa IFI no-aspergillus) y Mucorales (10-19% en SOT).
- Hábitat:
 - Suelo, agua estancada, estiércol
 - Contaminación de heridas
 - Hospedadores: felino, equino. NO se transmite de persona a persona ni de animales a hombre.
- MDR/ Resistencia alta a antifúngicos

Tabla 1Manifestaciones clínicas de las principales especies del género *Scedosporium*

	S. apiospermum	S. prolificans
Colonización	Oído externo	
	Traqueobronquial (fibrosis	
	quística)	
	Bola fúngica pulmonar o	
	paranasal	
	Heridas	
Infección local	Micetoma	Artritis y osteomielitis
	Piel y partes blandas	Queratitis
	Artritis y osteomielitis	Herida quirúrgica
	Queratitis	Onicomicosis
Infección profunda	Sinusitis	Endoftalmitis
	Neumonía	Endocarditis (válvula
	Meningitis y abscesos SNC	nativa o protésica)
	Endoftalmitis	Neumonía
	Diseminación multiórgánica	Diseminación
		multiórgánica,
		especialmente al SNC

Pemán, Salavert 2014

- Aislado típicamente en vía respiratoria -> Trasplantados pulmonares y con fibrosis quística.
- Típico en síndrome de asfixia por inmersión (neumonía o absceso cerebral) o en traumatismos penetrantes en aguas contaminadas.
- Tratamiento medico-quirúrgico combinado durante 3-6 meses
 - Azoles/terbinafina
 - Azoles/micafungina.
 - Anfotericina B / micafungina

Muchas gracias

• ¿Preguntas?

